Patents Examined by Christopher J Gassen
  • Patent number: 11965840
    Abstract: An epoxy resin-based embedding media doped with a non-conductive dopant to a predetermined w/w % such that the media is non-charging at 1.8 keV. A preferred dopant is polyethylene glycol at a molecular weight of at least 3350, and having a predetermined w/w % is at least 2% and up to 20%, most preferably from 2% to 10%. Another preferred dopant is polyethylene glycol at a molecular weight of 7000-8000 and a predetermined w/w % of up to ˜40% and more preferably of up to ˜30%.
    Type: Grant
    Filed: April 23, 2021
    Date of Patent: April 23, 2024
    Assignee: The Regents of the University of California
    Inventors: Thomas Deerinck, Mark Ellisman, Steven Peltier
  • Patent number: 11961702
    Abstract: Systems and methods for preparing a nanofluidic LCTEM cell are provided. An exemplary method includes coating a photoresist layer onto a top surface of a silicon nitride substrate; etching channels into the photoresist layer; depositing calcite into the etched channels; removing the photoresist; placing the cell on a holder; connecting a first end of an inlet line to the cell; connecting a second end of the inlet line to an ultrasound transducer configured to generate nanobubbles; and connecting an outlet line to the cell.
    Type: Grant
    Filed: December 9, 2021
    Date of Patent: April 16, 2024
    Assignee: Saudi Arabian Oil Company
    Inventors: Hassan Alqahtani, Dong Kyu Cha, Mohammed Al Otaibi
  • Patent number: 11921069
    Abstract: The following invention is used for determining the relative permeability of a fluid in a rock for three different phases: water, oil, and gas, in both conventional and unconventional formations. The permeability of a phase describes how much it can flow in porous media given a pressure gradient and is useful in evaluating reservoir quality and productivity. The following invention is a method to determine the three-phase relative permeabilities in both conventional and unconventional formations using NMR restricted diffusion measurements on core with NMR-active nuclei, combined with centrifugation of the core. In addition, the tortuosity, pore size (surface-to-volume ratio), fluid-filled porosity, and permeability is determined for each of the three phases in a rock.
    Type: Grant
    Filed: April 6, 2021
    Date of Patent: March 5, 2024
    Assignee: Vinegar Technologies LLC
    Inventors: Eva Vinegar, Philip M. Singer, George J. Hirasaki, Zeliang Chen, Xinglin Wang, Harold J. Vinegar
  • Patent number: 11908671
    Abstract: An ion analyzer includes a reaction chamber into which precursor ions derived from a sample component are introduced, a radical irradiation unit that generates and emits a predetermined type of radicals, a standard substance supply unit that individually supplies kinds of standard substances to the reaction chamber, where activation energy of radical addition reaction is known for each of the kinds of standard substances, and the activation energies are different in magnitude, an ion measurement unit that measures an amount of predetermined product ions generated from precursor ions derived from the standard substance by irradiation with the radicals, and a radical temperature calculation unit that obtains an amount of radicals that caused the radical addition reaction from the amount of the predetermined product ions and obtains a radical temperature based on a relationship between the amount of the radicals obtained for each kind of standard substance and activation energy.
    Type: Grant
    Filed: April 2, 2019
    Date of Patent: February 20, 2024
    Assignees: SHIMADZU CORPORATION, NATIONAL INSTITUTE OF ADVANCED INDUSTRIAL SCIENCE AND TECHNOLOGY
    Inventors: Hidenori Takahashi, Daiki Asakawa
  • Patent number: 11908668
    Abstract: An apparatus for obtaining ion energy distribution, IED, measurements in a plasma processing system, in one example, comprising a substrate for placement in the plasma processing system and exposed to the plasma, an ion energy analyser disposed in the substrate for measuring the ion energy distribution at the substrate surface during plasma processing, the analyser comprising a first conductive grid, a second conductive grid, a third conductive grid, a fourth conductive grid, and a collection electrode, each grid separated by an insulation layer, a battery power supply and control circuitry, integrated in the substrate, for supplying and controlling voltage to each of the grids and the collector of the ion energy analyser; wherein at least one insulation layer includes a peripheral portion which is of reduced thickness with respect to the remaining portion of the insulation layer.
    Type: Grant
    Filed: September 6, 2021
    Date of Patent: February 20, 2024
    Assignee: IMPEDANS LTD
    Inventors: Paul Scullin, James Doyle, JJ Lennon, David Gahan, Tigran Poghosyan
  • Patent number: 11894211
    Abstract: The invention provides an electron beam apparatus that reduces a time required for an electron gun chamber to which a sputter ion pump and a non-evaporable getter pump are connected to reach an extreme high vacuum state. The electron beam apparatus includes an electron gun configured to emit an electron beam and the electron gun chamber to which the sputter ion pump and the non-evaporable getter pump are connected. The electron beam apparatus further includes a gas supply unit configured to supply at least one of hydrogen, oxygen, carbon monoxide, and carbon dioxide to the electron gun chamber.
    Type: Grant
    Filed: July 2, 2019
    Date of Patent: February 6, 2024
    Assignee: HITACHI HIGH-TECH CORPORATION
    Inventors: Erina Kawamoto, Soichiro Matsunaga, Souichi Katagiri, Keigo Kasuya, Takashi Doi, Tetsuya Sawahata, Minoru Yamazaki
  • Patent number: 11881374
    Abstract: Disclosed among other aspects is a charged particle inspection system including an absorbing component and a programmable charged-particle mirror plate arranged to modify the energy distribution of electrons in a beam and shape the beam to reduce the energy spread of the electrons and aberrations of the beam, with the absorbing component including a set of absorbing structures configured as absorbing structures provided on a transparent conductive layer and a method using such an absorbing component and with the programmable charged-particle mirror plate including a set of pixels configured to generate a customized electric field to shape the beam and using such a programmable charged-particle mirror plate.
    Type: Grant
    Filed: February 4, 2020
    Date of Patent: January 23, 2024
    Assignee: ASML Netherlands B.V.
    Inventors: Shakeeb Bin Hasan, Yan Ren, Maikel Robert Goosen, Albertus Victor Gerardus Mangnus, Erwin Paul Smakman
  • Patent number: 11876398
    Abstract: Autonomous wireless sensors in subsurface environments can be charged while present in the subsurface environment to allow the sensors to measure and wirelessly transmit measurements. The sensors rely upon a contrast agent to provide a power flow path to the sensors.
    Type: Grant
    Filed: March 2, 2020
    Date of Patent: January 16, 2024
    Assignees: National Technology & Engineering Solutions of Sandia, LLC, The Board of Regents of the University of Texas System, Wayne State University
    Inventors: Jason E. Heath, Gungor Didem Beskardes, Wallace McAliley, Chester J. Weiss, Mohsen Ahmadian-Tehrani, David T. Chapman, Leela Arava
  • Patent number: 11860083
    Abstract: An apparatus for testing an object may include a test chamber, a first chamber, a second chamber, and a gas supply module. The test chamber receives a test board for testing an object. The first chamber is under the test chamber and receives a lower surface of the test board. The second chamber surrounds the first chamber to isolate the first chamber from ambient air. The gas supply module supplies a dry gas to the second chamber to provide a positive pressure higher than an ambient pressure, thereby preventing the ambient air from infiltrating into the first chamber. Thus, during the testing of the object at a low temperature, the second chamber may prevent the humid ambient air from infiltrating into the first chamber to prevent condensation of water on the lower surface of the test board.
    Type: Grant
    Filed: July 8, 2021
    Date of Patent: January 2, 2024
    Assignee: SAMSUNG ELECTRONICS CO, LTD.
    Inventors: Dahm Yu, Jaehyun Kim, Seonmi Lee, Hyunmin Kwon, Sangjun Lee
  • Patent number: 11828687
    Abstract: A method for the detection of restricted airflow to a smoke sensor in a central detector unit of an aspirating smoke detection system. An aspirator of the detector unit draws air into the central detector unit along a plurality of sampling pipes. A first portion of the air is directed along a sensing conduit via a filter to the smoke sensor, whilst a second portion of the air continues along a primary conduit and is not directed through the smoke sensor. A first flow meter is positioned on the sensing conduit, and a second flow rate meter is positioned on the primary conduit. A ratio of the flow rates measured by the first and second flow meters is calculated, and used to determine that the filter is restricting airflow to the smoke sensor when the ratio exceeds a predetermined threshold.
    Type: Grant
    Filed: December 7, 2020
    Date of Patent: November 28, 2023
    Assignee: CARRIER CORPORATION
    Inventor: Pere Moix Olive
  • Patent number: 11830705
    Abstract: A method for altering surface charge on an insulating surface of a first sample includes generating first plasma inside a plasma source, causing the first plasma to diffuse into a first vacuum chamber to generate second downstream plasma, immersing the first sample in the second downstream plasma, and applying a first bias voltage to a conductive layer of the first sample, or applying a first bias voltage to a metal holder that holds the first sample.
    Type: Grant
    Filed: April 5, 2021
    Date of Patent: November 28, 2023
    Inventor: Ximan Jiang
  • Patent number: 11830708
    Abstract: A broad-band sensor for a radio frequency plasma processing system that includes a reaction chamber housing an electrode within a vacuum processing environment. The sensor includes an inductive pickup positioned in the vacuum processing environment proximate to the electrode. The inductive pickup includes a wire formed into a loop extending in an azimuthal direction about a symmetry axis of the reaction chamber. A lead carrying an electric signal from the inductive pickup extends through a vacuum wall of the reaction chamber outside the vacuum processing environment. An attenuator circuit including an electrical resistance bridge couples the lead to a signal carrier extending outside the vacuum processing environment. The broad-band sensor has radio frequency detection capability for measuring electromagnetic surface modes within the plasma chamber and coupling the measured electromagnetic surface modes to the signal carrier.
    Type: Grant
    Filed: January 8, 2021
    Date of Patent: November 28, 2023
    Assignee: COMET TECHNOLOGIES USA, INC.
    Inventors: Stephen E. Savas, Alexandre De Chambrier
  • Patent number: 11821310
    Abstract: A method and a system for determining fluid contamination. The method may comprise monitoring a fluid sample, wherein the fluid sample comprises a reservoir fluid contaminated with a well fluid, and obtaining input parameters, wherein the input parameters comprise fluid properties obtained from measurement of the fluid sample and mud filtrate composition. The method may further comprise representing a mud composition as a Gaussian distribution, selecting a plurality of input data during a pumpout, determining calculated fluid properties of the reservoir fluid using an equation of state filtrate analysis, and further obtaining updated vales of iterative parameters for use in a mole fraction distribution function. The system may comprise a downhole fluid sampling tool operable to obtain fluid samples of a reservoir fluid contaminated with a well fluid while the downhole fluid sampling tool is disposed in a wellbore, and a processor.
    Type: Grant
    Filed: November 30, 2018
    Date of Patent: November 21, 2023
    Assignee: Halliburton Energy Services, Inc.
    Inventors: Mehdi Alipour Kallehbasti, Peter Ojo Olapade, Bin Dai, Christopher Michael Jones
  • Patent number: 11821732
    Abstract: The present disclosure is directed to a device configured to detect whether the device is in a bag or outside of the bag. The device determines whether the device is in or outside of the bag based on distance measurements generated by at least one proximity sensor and motion measurements generated by at least one motion sensor. By using both distance measurements and motion measurements, the device is able to detect whether the device is in the bag or outside of the bag with high accuracy and robustness.
    Type: Grant
    Filed: January 7, 2021
    Date of Patent: November 21, 2023
    Assignee: STMICROELECTRONICS S.r.l.
    Inventors: Stefano Paolo Rivolta, Federico Rizzardini, Lorenzo Bracco, Roberto Mura
  • Patent number: 11817291
    Abstract: The inventive concept relates to an apparatus for processing a substrate. In an embodiment, the apparatus for processing the substrate includes a plasma chamber, a coil electrode installed around the plasma chamber, and a Faraday shield provided between the coil electrode and the plasma chamber. The Faraday shield includes a cutout having a plurality of slots formed in a vertical direction along a periphery of the plasma chamber, an upper rim provided at the top of the cutout, and a lower rim provided at the bottom of the cutout. The upper rim and the lower rim have a thermal expansion reduction means configured to reduce a difference in thermal deformation between the upper and the lower rim and the cutout.
    Type: Grant
    Filed: May 14, 2021
    Date of Patent: November 14, 2023
    Assignee: PSK INC.
    Inventor: Mu-Kyeom Mun
  • Patent number: 11810752
    Abstract: The invention provides a power supply device and a charged particle beam device capable of reducing noise generated between a plurality of voltages. The charged particle beam device includes a charged particle gun configured to emit a charged particle beam, a stage on which a sample is to be placed, and a power supply circuit configured to generate a first voltage and a second voltage that determine energy of the charged particle beam and supply the first voltage to the charged particle gun. The power supply circuit includes a first booster circuit configured to generate the first voltage, a second booster circuit configured to generate the second voltage, and a switching control circuit configured to perform switching control of the first booster circuit and the second booster circuit using common switch signals.
    Type: Grant
    Filed: August 9, 2021
    Date of Patent: November 7, 2023
    Assignee: HITACHI HIGH-TECH CORPORATION
    Inventors: Wen Li, Hiroyuki Takahashi, Makoto Suzuki, Yuzuru Mizuhara
  • Patent number: 11796604
    Abstract: A measuring apparatus includes: N pairs of probes that are respectively connected to a positive electrode and an external member of N rechargeable batteries that have a capacitance connected in parallel between the positive electrode and the external member; a scanner that selectively switches to one pair of probes out of the N pairs; a measuring apparatus that measures the voltage between the selected probes; and a controller. A plurality of resistance configurations to be connected between each pair of probes are provided. After a standby time has elapsed in a state where the N pairs of probes are connected to the positive electrodes and external members of the N rechargeable batteries, the controller outputs control signals to the scanner to successively switch to each pair of probes and causes the measuring apparatus to measure the voltage between the selected probes every time switching is performed.
    Type: Grant
    Filed: July 8, 2021
    Date of Patent: October 24, 2023
    Assignee: HIOKI E.E. CORPORATION
    Inventor: Junji Iijima
  • Patent number: 11796721
    Abstract: Aspects of the present disclosure describe techniques for using a parabolic Cassegrain-type reflector for ablation. For example, a system for ablation loading of a trap is described that includes a reflector having a hole aligned with a loading aperture of the trap, and an atomic source positioned at a focal point of the reflector, where one or more laser beams are reflected from a reflective front side of the reflector and focused on a surface of the atomic source to produce an atomic plume, and the atomic plume once produced passing through the hole in the reflector and through a loading aperture of the trap for loading the trap. A method for ablation loading of a trap within a chamber in a trapped ion system is also described.
    Type: Grant
    Filed: June 8, 2021
    Date of Patent: October 24, 2023
    Assignees: IONQ, INC., DUKE UNIVERSITY
    Inventors: Kenneth Wright, Jason Madjdi Amini, Jungsang Kim
  • Patent number: 11782084
    Abstract: A method, computer program, and computer system is provided for fault detection in an electrical network. An inductance between a reference point and a fault is determined at a first time based on measuring a fault current. A resistance between the reference point and the fault may be determined at a second time based on measuring a differential of the fault current as zero. A location of the fault may be identified based on the inductance and the resistance.
    Type: Grant
    Filed: June 30, 2021
    Date of Patent: October 10, 2023
    Assignee: HOWARD UNIVERSITY
    Inventor: Charles J Kim
  • Patent number: 11774494
    Abstract: Systems and methods are provided for testing a threshold energy required to cause a latchup on an electronic component. An exemplary method includes applying a series of laser pulses to a testing object with a pulsed laser unit. The testing object is connected to a testing circuit which can measure the energy of each of the series of laser pulses, and detect whether a pulse of the series of laser pulses resulted in a latchup on the testing object. Upon detecting the pulse, the method provides for logging the energy of the pulse using a recording unit and logging the latchup status of the test device. If a latchup is detected, the testing circuit automatically mitigates the latchup event.
    Type: Grant
    Filed: August 10, 2022
    Date of Patent: October 3, 2023
    Assignee: VANDERBILT UNIVERSITY
    Inventors: Andrew L. Sternberg, Ronald D. Schrimpf, Robert A. Reed