Patents Examined by Christopher Jetton
  • Patent number: 8925313
    Abstract: A device that converts wave energy to electrical or chemical energy includes a buoy adapted to float on a water surface, a venturi tube, and a rigid or flexible means of connecting the buoy and the venturi tube. The venturi tube defines a lumen through which water flows downwardly when the buoy moves upwardly and upwardly when the buoy moves downwardly. A constriction is formed in the lumen to create a venturi effect for water flowing upwardly and downwardly through the lumen. A turbine is positioned in the lumen at the constriction where water flow is at a maximum rate. The turbine is connected to a generator so that the venturi effect is harnessed to generate power. Multiple embodiments are included.
    Type: Grant
    Filed: February 20, 2009
    Date of Patent: January 6, 2015
    Inventor: Brian Lee Moffat
  • Patent number: 8925321
    Abstract: A steam power plant is provided. The steam power plant includes a bypass pipeline which connects the fresh steam line flow to the exhaust steam line, wherein a bypass steam cooler is disposed in the bypass pipeline. In the event of an emergency stop, or a startup, or a shutdown, the bypass steam cooler cools the steam flowing into the bypass pipeline, whereby cheaper materials may be used for the bypass pipeline.
    Type: Grant
    Filed: September 16, 2009
    Date of Patent: January 6, 2015
    Assignee: Siemens Aktiengesellschaft
    Inventors: Bernd Leu, Andreas Logar, Heinz Lötters, Stephan Minuth
  • Patent number: 8919123
    Abstract: A waste heat recovery apparatus for use with an internal combustion engine includes a working fluid circuit having a first heating line and a second heating line parallel to the first heating line, a first heat exchanger in the first heating line operatively connected to transfer heat energy to the working fluid from a waste exhaust flow of an internal combustion engine, a second heat exchanger in the second heating line operatively connected to transfer heat energy to the working fluid from recirculating exhaust gas the internal combustion engine, and a recuperative heat exchanger operatively connected to transfer heat energy to the working fluid in the first heating line from the working fluid at a junction of an expander outlet and condenser inlet.
    Type: Grant
    Filed: July 14, 2011
    Date of Patent: December 30, 2014
    Assignee: Mack Trucks, Inc.
    Inventors: John Gibble, Arne Andersson
  • Patent number: 8919124
    Abstract: A solar thermal power plant is provided. The solar thermal power plant includes a solar collection system configured for utilizing incident solar radiation to heat a heat transfer fluid (HTF) and a power block configured for utilizing the heated HTF to generate power. The solar collection system includes a plurality of pipes for carrying HTF characterized by a first degree of permeability to hydrogen, at least some of the pipes including portions exposed to the atmosphere, and including a membrane made of a material being characterized by a second degree of permeability to hydrogen, the second degree of permeability being higher than the first degree of permeability to hydrogen.
    Type: Grant
    Filed: December 29, 2009
    Date of Patent: December 30, 2014
    Assignee: Siemens Concentrated Solar Power Ltd
    Inventor: Menashe Barkai
  • Patent number: 8904791
    Abstract: A power generation system is provided. The system comprises a first Rankine cycle-first working fluid circulation loop comprising a heater, an expander, a heat exchanger, a recuperator, a condenser, a pump, and a first working fluid; integrated with a) a second Rankine cycle-second working fluid circulation loop comprising a heater, an expander, a condenser, a pump, and a second working fluid comprising an organic fluid; and b) an absorption chiller cycle comprising a third working fluid circulation loop comprising an evaporator, an absorber, a pump, a desorber, a condenser, and a third working fluid comprising a refrigerant. In one embodiment, the first working fluid comprises CO2. In one embodiment, the first working fluid comprises helium, air, or nitrogen.
    Type: Grant
    Filed: November 19, 2010
    Date of Patent: December 9, 2014
    Assignee: General Electric Company
    Inventors: Matthew Alexander Lehar, Sebastian Walter Freund, Thomas Johannes Frey, Gabor Ast, Pierre Sebastien Huck, Monika Muehlbauer
  • Patent number: 8904789
    Abstract: The invention relates to a method for generating energy by means of thermal cycles with high pressure and moderate temperature steam, which allows improving the energy and operational efficiency of the conversion of heat energy into mechanical or electrical energy by means of thermal cycles in which the temperature of the steam is limited to moderate values in its generation, comprising the following steps: a) generating steam at a pressure above 65 bar and a moderate temperature below 400° C., b) expanding said steam in a steam turbine, steam of an intermediate pressure, comprised between 10-40 bar, with a moderate moisture, below 15%, being obtained c) drying said steam by means of a moisture separator and reheating said steam, d) expanding said steam in the turbine, and e) heating boiler water used to generate the steam by means of a plurality of steam extractions from the turbine, in order to exchange heat with said boiler water.
    Type: Grant
    Filed: February 24, 2009
    Date of Patent: December 9, 2014
    Assignee: Sener Grupo de Ingenieria, S.A.
    Inventors: JoséMaría Menéndez Salcedo, Jerónimo Angulo Aramburu
  • Patent number: 8904781
    Abstract: An actuation system having a configuration of first and second components, each component having longitudinally extending fingers interlaced with one another. Relative longitudinal movement is permitted between the fingers in a manner to permit the second component to be movable longitudinally with respect to the first component between a first position and a second position. A biasing member is provided within the configuration that biases the second component towards the second position. A wire is wound about the fingers that restrains the second component in the first position. A release device selectively causes the wire to be loosened about the fingers such that the biasing member moves the second component from the first position to the second position. An actuator connected to the second component moves with the second component from the first position to the second position.
    Type: Grant
    Filed: July 13, 2012
    Date of Patent: December 9, 2014
    Assignee: Simmonds Precision Products, Inc.
    Inventor: Martin E. Buttolph
  • Patent number: 8904778
    Abstract: A wave energy converter (WEC) having an asymmetrically shaped float and a spar which move relative to each other in response to the waves. The asymmetrical float has one side longer than the other. A power take off device (PTO) is coupled between the asymmetric float and the spar for converting their relative motion into useful power. Apparatus is coupled to the WEC for: (a) orienting and rotating the longer side of the float to face and receive oncoming waves to increase energy capture when the waves have an amplitude below a predetermined value for improving the power generation of the WEC; and (b) rotating the float to orient the narrower side of the float to face and receive the incoming waves when the waves have an amplitude above a predetermined value, so as to reduce the forces to which the WEC is subjected. There is no known WEC system with an asymmetrical float which is raised and lowered by the waves.
    Type: Grant
    Filed: March 28, 2011
    Date of Patent: December 9, 2014
    Assignee: Ocean Power Technologies, Inc
    Inventors: James S. Gerber, George W. Taylor
  • Patent number: 8904792
    Abstract: Systems and methods are disclosed for storing energy and generating power and/or heat within a subsea environment. The systems and methods utilize stored compressed air within an air storage chamber to drive an engine/generator system in order to generate power. The engine may or may not utilize combustion. Alternatively, the systems and methods utilize stored compressed air to supply air to a combustor to generate heat. The heat generated can be used for variety of purposes, including to generate steam and to heat heavy oil.
    Type: Grant
    Filed: May 5, 2011
    Date of Patent: December 9, 2014
    Assignee: Chevron U.S.A. Inc.
    Inventors: Harrison W. Sigworth, Jr., Trevor N. Demayo, Yaofan Yi
  • Patent number: 8899044
    Abstract: Disclosed are a method and apparatus for converting light energy to mechanical energy by modification of surface tension on a supporting fluid. The apparatus comprises an object which may be formed as a composite object comprising a support matrix and a highly light absorptive material. The support matrix may comprise a silicon polymer. The highly light absorptive material may comprise vertically aligned carbon nanotubes (VANTs) embedded in the support matrix. The composite object is supported on a fluid. By exposing the highly light absorptive material to light, heat is generated, which changes the surface tension of the composite object, causing it to move physically within the fluid.
    Type: Grant
    Filed: March 22, 2011
    Date of Patent: December 2, 2014
    Assignee: The Regents of the University of California
    Inventors: David Okawa, Stefan J. Pastine, Alexander K. Zettl, Jean M. J. Frechet
  • Patent number: 8893495
    Abstract: A waste heat recovery (WHR) system operates in a reverse mode, permitting using the WHR system to transfer heat to the exhaust gas of an internal combustion engine. In another configuration, a WHR system may operate in two modes. The first mode removes heat from exhaust gas of an engine to perform useful work. The second mode transfers heat to the exhaust gas. The benefit of this flexible system is that a WHR system is adaptable to rapidly heat exhaust gas at startup and during other conditions where the temperature of the exhaust gas is less than a predetermined operating range. Because of the ability to rapidly warm engine exhaust gas, an exhaust gas receiving system, such as an EGR or an aftertreatment system, may function to reduce the emissions of the engine more quickly. Because this system is reversible, it retains the capability of a conventional WHR system.
    Type: Grant
    Filed: July 16, 2012
    Date of Patent: November 25, 2014
    Assignee: Cummins Intellectual Property, Inc.
    Inventor: Marten H. Dane
  • Patent number: 8893492
    Abstract: An underwater wave energy converter (WEC) (10) has a piston (32) that reciprocates up and down as recurring waves (22) pass over. Downward motion of the piston (32) drives the rods or plungers (50b) of a multiplicity of hydraulic jacks (50) to pressurize hydraulic fluid in an energy conversion system. Ultimately, the energy conversion system powers one or more hydraulic motors (511, 512) that drive an electric generator (510) or multiple generators. A sensor system (25) detects characteristics of in-coming waves such as by detecting changes in pressure as in-coming waves (22) pass over the sensor system (25). The sensors can be mounted on the ocean floor seaward from the WECs (10), and a control computer system (231) calculates characteristics of the in-coming waves such as wave height and speed data, and uses the data to control aspects of the WECs (10) and other components of the energy conversion system.
    Type: Grant
    Filed: December 14, 2010
    Date of Patent: November 25, 2014
    Inventor: Frank Louis Stromotich
  • Patent number: 8881521
    Abstract: A method of reducing an initial stress on a cable includes stretching the cable to a first length to thereby define the initial stress. The cable has a central longitudinal axis, and includes a plurality of wires each twisted around the axis and formed from a shape memory alloy transitionable in response to a signal between a first state wherein each of the wires has a first temperature-dependent length, and a second state wherein each of the wires has a second temperature-dependent length that is less than the first. After stretching, the method includes activating the alloy by exposing the alloy to the signal such that the alloy transitions from the first to the second temperature-dependent state. Concurrent to activating, the method includes elongating the cable to a second length that is greater than the first to define a second stress on the cable that is less than the first.
    Type: Grant
    Filed: August 16, 2012
    Date of Patent: November 11, 2014
    Assignee: GM Global Technology Operations LLC
    Inventors: Alan L. Browne, Paul W. Alexander, Nancy L. Johnson
  • Patent number: 8881524
    Abstract: The invention relates to a device for opening a passenger door (1) of an aircraft in case of emergency, which is fastened so it is manually pivotable on the fuselage (3) of the aircraft via a hinge and/or support arm configuration (2), an auxiliary-energy-operated emergency opening drive (4) being provided between the fuselage (3) and the passenger door (1), which automatically opens the passenger door (1) in accordance with an emergency control unit (5), the auxiliary energy for the emergency opening drive (4) being pyrotechnic energy, whose gas expanding inside an expansion chamber (6) after triggering by the emergency control unit (5) impinges the emergency opening drive (4) with pressure medium to open the passenger door (1), wherein said emergency opening drive (4) generates a rotational movement.
    Type: Grant
    Filed: March 2, 2009
    Date of Patent: November 11, 2014
    Assignee: Airbus Helicopters Deutschland GmbH
    Inventors: Stefan Andres, Hans Bartosch, Wolfgang Buchs, Manfred Held, Rainer Hertle
  • Patent number: 8876061
    Abstract: A method for producing a heated fluid for use within an engine for propulsion of a vehicle is described. The method includes receiving cooled fluid from a fluid source, directing the cooled fluid between a first window configured to operate as a structural member of the engine and a second window configured to separate the cooled fluid from a heated fluid, passing an electromagnetic beam through the first window and the second window, absorbing the passed electromagnetic beam with a heat exchanger within the engine, and directing the cooled fluid through the heat exchanger to become heated fluid.
    Type: Grant
    Filed: November 16, 2011
    Date of Patent: November 4, 2014
    Assignee: The Boeing Company
    Inventor: Brian J. Tillotson
  • Patent number: 8875515
    Abstract: An expansion system is presented. One embodiment of the expansion system that includes a pump configured to pressurize a condensed working fluid received from a condenser. The expansion system further includes a heat exchanger coupled to the pump and configured to vaporize the condensed working fluid received from the pump. The expansion system also includes an expander coupled to the heat exchanger and configured to expand the vaporized working fluid flowing from an inlet side of the expander to an outlet side of the expander. In addition, the expansion system includes a generator coupled to the expander and configured to generate energy in response to the expansion of the vaporized working fluid. Further, the expansion system includes an integrated cooling unit configured to convey at least a portion of the condensed working fluid from an inlet side of the generator to an outlet side of the generator to dissipate heat generated by the generator.
    Type: Grant
    Filed: April 29, 2011
    Date of Patent: November 4, 2014
    Assignee: General Electric Company
    Inventors: Gabor Ast, Herbert Kopecek, Sebastian Walter Freund, Pierre Sebastien Huck
  • Patent number: 8875514
    Abstract: A thermo-electric engine with a working fluid operative in a closed Rankine cycle to enable a harvesting energy from an external source of thermodynamic energy, such as an internal combustion engine or solar energy. The thermo-electric engine can have an evaporator; a turbine fluidically coupled to the evaporator; a heat exchanger comprising a condenser for receiving working fluid from the turbine; a hot liquid input for coupling to a source of heated liquid coolant from an internal combustion engine to the evaporator; a liquid return for returning liquid coolant to the internal combustion engine; a cooling liquid input to the condenser for receiving cooling liquid from a radiator; and a cooling liquid return for returning the cooling liquid to the radiator. Alternatively, a solar energy collector can power a turbine fluidically coupled to the solar energy collector for receiving working fluid.
    Type: Grant
    Filed: December 12, 2012
    Date of Patent: November 4, 2014
    Inventors: John Pesce, David Pesce
  • Patent number: 8869529
    Abstract: Systems, methods, and apparatus relating to the use of Stirling engine technology to convert heat, such as from solar radiation, to mechanical work or electricity. Apparatus, systems, components, and methods relating to energy converting apparatus are described herein. In one aspect, the invention relates to the field alignment of panels and the assembly of a concentrator. In another aspect, a passive balancer is used in combination with a ring frame and other moving masses to reduce engine forces and vibration on the structure of the energy converting apparatus while maintaining properly constrained alignment of various suspended masses. In yet another aspect, the invention relates to various over-insolation control and management strategy to prevent overheating of the energy converting apparatus or components and subsystems thereof.
    Type: Grant
    Filed: March 16, 2012
    Date of Patent: October 28, 2014
    Assignee: Qnergy Inc
    Inventors: Paul Fraser, Terry Smith, Rocco Luongo, Justin Thurgood, Trent Wetherbee, Raphael Milleret, Allen Peterson, John Edward Augenblick, Scott McCallum, Ian Williford, Ray Erbeznik, Ben Gyori, Patrick Fox, Harry McVicker, Tina Dale
  • Patent number: 8863516
    Abstract: The present invention is directed to a solar energy system including a tower having a solar radiation receiver, the solar radiation receiver including a plurality of tubes carrying a heat-transfer medium and a drum, the drum in thermal communication with the tubes, and one or more mirrors configured to reflect solar radiation onto the receiver, wherein the receiver receives the reflected solar radiation from the mirrors, thereby heating the heat transfer medium and vaporizing the heat transfer medium.
    Type: Grant
    Filed: August 23, 2011
    Date of Patent: October 21, 2014
    Assignee: Chevron U.S.A. Inc.
    Inventor: John D. Penton
  • Patent number: 8863521
    Abstract: A steam turbine plant of one embodiment includes a boiler configured to change water into steam, a high pressure turbine including a turbine or turbines connected to each other in series, and having a first inlet to supply the steam from the boiler, an extraction port located at a downstream of the first inlet, a second inlet to supply the steam extracted from the extraction port and located at a downstream of the extraction port, and an exhaust port located at a downstream of the second inlet, the high pressure turbine being configured to be driven by the steam supplied from the first and second inlets, an extraction steam heater configured to heat the steam extracted from the extraction port and to supply the heated steam to the second inlet, a reheater configured to heat the steam exhausted from the exhaust port, and a reheat turbine configured to be driven by the steam from the reheater.
    Type: Grant
    Filed: April 6, 2011
    Date of Patent: October 21, 2014
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Koichi Goto, Nobuo Okita