Patents Examined by Christopher Kessler
  • Patent number: 9968999
    Abstract: Permanent magnets are used for several important applications, including dc electrical motors, wind turbines, hybrid automobile, and for many other applications. Modern widely used rare-earth based permanent magnet materials, such as Sm—Co and Nd—Fe—B, are generally intermetallic alloys made from rare earth elements and transition metals such as cobalt. However, the high costs of rare earth elements make the widespread use of these permanent magnets commercially unattractive. The present work focuses on producing a new permanent magnet material, with good magnetic properties, which is free from rare-earth elements and thus cost-effective. The present invention provides a process to synthesis boron doped manganese antimonide as an alternative to rare earth based permanent magnet materials. The boron doped manganese antimonide disclosed in this invention is free from rare-earth element with good magnetic properties.
    Type: Grant
    Filed: October 16, 2014
    Date of Patent: May 15, 2018
    Assignee: COUNCIL OF SCIENTIFIC & INDUSTRIAL RESEARCH
    Inventors: Nidhi Singh, Jiji Thomas Joseph Pulikkotil, Anurag Gupta, Kanika Anand, Ajay Dhar, Ramesh Chandra Budhani
  • Patent number: 9969004
    Abstract: Titanium alloy containing iron, that is, iron-containing titanium alloy having high strength and hardness in which iron in a composition which cannot be realized in a conventional method, is contained with no segregation, and is provided in lower cost. The ?+? titanium alloy or ? titanium alloy is produced by a forming process such as hot extrusion of titanium alloy powder containing 3 to 15 mass % of iron powder. The method for production of the ?+? titanium alloy or ? titanium alloy includes a step of mixing 3 to 15 mass % of iron powder and titanium alloy powder as the remainder, and a step of performing a forming process of hot extrusion on this powder mixture.
    Type: Grant
    Filed: December 16, 2011
    Date of Patent: May 15, 2018
    Assignees: TOHO TITANIUM CO., LTD., SANYO SPECIAL STEEL CO., LTD.
    Inventors: Osamu Kanou, Satoshi Sugawara, Hideo Takatori
  • Patent number: 9969003
    Abstract: The process comprises the steps of: mixing a load of oxide ceramic material particles (10) with a load of space holder particles (20), defined by graphite and/or amorphous carbon; compacting the mixture formed by ceramic material particles (10) and space holder particles (20), to form a compact body (E); and sintering said compact body (E), so that the ceramic material particles (10) form sintering contacts with each other, whereas the carbon of the space holder particles (20) is removed by the reaction with the oxygen in the sintering medium, to form open secondary pores (II), by eliminating the space holder particles (20). The metallurgic composition comprises the mixture of the ceramic material particles (10) with the space holder particles (20).
    Type: Grant
    Filed: December 19, 2012
    Date of Patent: May 15, 2018
    Assignee: Universidade Federal De Santa Catarina (UFSC)
    Inventors: Roberto Binder, Aloisio Nelmo Klein, Arcanjo Lenzi, Cristiano Binder, Irene Cristina Magnabosco Mocellin, Rodrigo Pereira Becker, Paulo Henrique Mareze
  • Patent number: 9966171
    Abstract: Disclosed herein is a method comprising disposing a first particle in a reactor; the first particle being a magnetic particle or a particle that can be influenced by a magnetic field, an electric field or a combination of an electrical field and a magnetic field; fluidizing the first particle in the reactor; applying a uniform magnetic field, a uniform electrical field or a combination of a uniform magnetic field and a uniform electrical field to the reactor; elevating the temperature of the reactor; and fusing the first particles to form a monolithic solid.
    Type: Grant
    Filed: July 6, 2012
    Date of Patent: May 8, 2018
    Assignee: UNIVERSITY OF FLORIDA RESEARCH FOUNDATION, INC.
    Inventors: James F. Klausner, Renwei Mei, Ayyoub Mehdizadeh Momen, Kyle Allen
  • Patent number: 9957836
    Abstract: A titanium alloy may be characterized by a good oxidation resistance, high strength and creep resistance at elevated temperatures up to 750° C., and good cold/hot forming ability, good superplastic forming performance, and good weldability. The alloy may contain, in weight percent, aluminum 4.5 to 7.5, tin 2.0 to 8.0, niobium 1.5 to 6.5, molybdenum 0.1 to 2.5, silicon 0.1 to 0.6, oxygen up to 0.20, carbon up to 0.10, and balance titanium with incidental impurities.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: May 1, 2018
    Assignee: RTI International Metals, Inc.
    Inventors: Fusheng Sun, Ernest M. Crist, Kuang-O Yu
  • Patent number: 9959986
    Abstract: A method for producing an electrode material, provided to involve: (i) a provisional sintering step of sintering a mixed powder containing a powder of a heat resistant element and a powder of Cr to obtain a solid solution where the heat resistant element and Cr are dissolved; (ii) a pulverizing step of pulverizing the solid solution to obtain a powder; (iii) a main sintering step of sintering a molded body obtained by molding the powder of the solid solution, to produce a sintered body; and (iv) a Cu infiltration step of infiltrating the sintered body with Cu.
    Type: Grant
    Filed: February 17, 2015
    Date of Patent: May 1, 2018
    Assignee: MEIDENSHA CORPORATION
    Inventors: Kaoru Kitakizaki, Keita Ishikawa, Shota Hayashi, Nobutaka Suzuki, Kosuke Hasegawa
  • Patent number: 9862029
    Abstract: In one aspect, methods of making freestanding metal matrix composite articles and alloy articles are described. A method of making a freestanding composite article described herein comprises disposing over a surface of the temporary substrate a layered assembly comprising a layer of infiltration metal or alloy and a hard particle layer formed of a flexible sheet comprising organic binder and the hard particles. The layered assembly is heated to infiltrate the hard particle layer with metal or alloy providing a metal matrix composite, and the metal matrix composite is separated from the temporary substrate. Further, a method of making a freestanding alloy article described herein comprises disposing over the surface of a temporary substrate a flexible sheet comprising organic binder and powder alloy and heating the sheet to provide a sintered alloy article. The sintered alloy article is then separated from the temporary substrate.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: January 9, 2018
    Assignee: KENNAMETAL INC
    Inventors: Qingjun Zheng, Yixiong Liu, James A Faust, Mark J Rowe, Danie J De Wet, Sudharsan Subbaiyan, Michael J Meyer
  • Patent number: 9856546
    Abstract: The invention provides for a cermet powder containing 75-90% by weight of at least one hard material powder, from 10 to 25% by weight of one or more matrix metal powders and up to 3% by weight of at least one modifier, wherein the matrix metal powder or powders contain from 0 to 38% by weight of cobalt, from 0 to 38% by weight of nickel, from 0 to 20% by weight of aluminum, from 0 to 90% by weight of iron and from 10 to 35% by weight of chromium and the sum of the contents of iron and chromium is in the range from 10 to 95% by weight and the sum of the contents of cobalt, nickel and iron is in the range from 65 to 95% by weight. The invention also relates to a cermet and a process to make the cermet containing the cermet powder and shaped article coated with the cermet powder and a process to make the shaped article.
    Type: Grant
    Filed: September 21, 2007
    Date of Patent: January 2, 2018
    Assignee: H. C. Starck GmbH
    Inventors: Jürgen Fischer, Aloys Eiling, Frank Schrumpf, Stefan Zimmermann, Peter Thienel, Roland Scholl
  • Patent number: 9828648
    Abstract: A steel sheet and a method for producing the same are disclosed. The steel sheet has a composition containing 0.015% to 0.05% C, less than 0.10% Si, 0.1% to 2.0% Mn, 0.20% or less P, 0.1% or less S, 0.01% to 0.10% Al, 0.005% or less N, and 0.06% to 0.5% Ti in percent by mass, C and Ti satisfying the inequality Ti*/C?4, where Ti* (mass percent)=Ti?3.4N and Ti, C, and N represent the content (mass percent) of each element. The steel sheet has a microstructure which contains a ferrite phase as a base, in which the average grain diameter of the ferrite phase is 7 ?m or more, and in which the ratio of the rolling-direction average grain diameter to thickness-wise average grain diameter of the ferrite phase is 1.1 or more.
    Type: Grant
    Filed: December 10, 2012
    Date of Patent: November 28, 2017
    Assignee: JFE STEEL CORPORATION
    Inventors: Taro Kizu, Koichiro Fujita
  • Patent number: 9821357
    Abstract: A bent product having a three-dimensionally bent portion intermittently or continuously in the lengthwise direction is manufactured by supporting a steel pipe at a first position A while feeding it in the lengthwise direction, locally heating the steel pipe being fed at a second position B, cooling the heated portion of the steel pipe at a third position C, and varying the position of a gripping means, which grips the steel pipe in a region D downstream of the third position C, in a three-dimensional direction including the feed direction of the steel pipe in a workspace including a space on the upstream side of the third position C in the feed direction of the steel pipe to impart a bending moment to the heated portion of the steel pipe.
    Type: Grant
    Filed: April 21, 2011
    Date of Patent: November 21, 2017
    Assignees: NIPPON STEEL & SUMITOMO METAL CORPORATION, SUMITOMO PIPE & TUBE CO., LTD.
    Inventors: Atsushi Tomizawa, Naoaki Shimada, Saburo Inoue, Shinjiro Kuwayama
  • Patent number: 9806327
    Abstract: A method for producing a porous element is presented. A powdery metal-ceramic composite material is produced. The composite material has a metal matrix and a ceramic portion amounting to less than 25 percent by volume. The metal matrix is at least partially oxidized to obtain a metal oxide. The metal-ceramic composite material is grinded and mixed with powdery ceramic supporting particles to obtain a metal-ceramic/ceramic mixture. The metal-ceramic/ceramic mixture is shaped into the porous element. The porous element can be used as an energy storage medium in a battery.
    Type: Grant
    Filed: April 3, 2012
    Date of Patent: October 31, 2017
    Assignee: SIEMENS AKTIENGESELLSCHAFT
    Inventors: Ines Becker, Horst Greiner
  • Patent number: 9796020
    Abstract: A method for the manufacture of a metal part, the method including the steps: a) compacting agglomerated spherical metal powder to a preform, b) debinding and sintering the preform to a part at a temperature not exceeding 1275° C., c) performing one of the following steps: i) compacting the part to a density of more than 95% of the theoretical density, or ii) compacting the part to a density of less than 95% of the theoretical density and sintering the part at a temperature not exceeding 1275° C. to a density of more than 95% of the theoretical density, and d) subjecting the part to hot isostatic pressing at a temperature not exceeding 1200° C. The method provides an industrial process to produce fully dense parts from alloys which normally cannot be produced and still give good impact properties, which is vital for many applications where there alloys are used.
    Type: Grant
    Filed: January 8, 2010
    Date of Patent: October 24, 2017
    Assignee: Metec Powder Metal AB
    Inventor: Christer Åslund
  • Patent number: 9764423
    Abstract: The invention refers to a method for manufacturing a hybrid component including the following steps of manufacturing a preform as a first part of the hybrid component, then successively building up on that preform a second part of the component from a metallic powder material by means of an additive manufacturing process by scanning with an energy beam, thereby establishing a controlled grain orientation in primary and in secondary direction of at least a part of the second part of the component. The controlled secondary grain orientation is realized by applying a specific scanning pattern of the energy beam, which is aligned to the cross section profile of the component or to the local load conditions for the component.
    Type: Grant
    Filed: February 28, 2014
    Date of Patent: September 19, 2017
    Assignee: ANSALDO ENERGIA IP UK LIMITED
    Inventors: Matthias Hoebel, Thomas Etter, Maxim Konter, Julius Schurb
  • Patent number: 9745647
    Abstract: An extrusion of a magnesium-based alloy consisting of, by weight: 0.5 to 1.5% manganese, 0.15 to 0.4% rare earth including lanthanum wherein the lanthanum content of the alloy is 0.15% to less than 0.3%, and up to 0.1% strontium, the balance being magnesium except for incidental impurities which includes zinc.
    Type: Grant
    Filed: February 3, 2015
    Date of Patent: August 29, 2017
    Assignee: MAGONTEC LIMITED
    Inventors: Matthew Robert Barnett, Christopher Huw John Davies, Aiden Graeme Beer
  • Patent number: 9732404
    Abstract: Steel sheet, the composition of the steel of which comprises, the contents being expressed by weight: 0.08%?C?0.23%, 1%?Mn?2%, 1?Si?2%, Al?0.030%, 0.1%?V?0.25%, Ti?0.010%, S?0.015%, P?0.1%, 0.004%?N?0.012%, and, optionally, one or more elements chosen from: Nb?0.1%, Mo?0.5%, Cr?0.3%, the balance of the composition consisting of iron and inevitable impurities resulting from the smelting.
    Type: Grant
    Filed: July 7, 2006
    Date of Patent: August 15, 2017
    Assignee: ArcelorMittal France
    Inventors: Patrick Barges, Colin Scott, Gerard Petitgand, Fabien Perrard
  • Patent number: 9734994
    Abstract: Provided are a crystalline alloy having significantly better thermal stability than an amorphous alloy as well as glass-forming ability, and a method of manufacturing the crystalline alloy. The present invention also provides an alloy sputtering target that is manufactured by using the crystalline alloy, and a method of manufacturing the alloy target. According to an aspect of the present invention, provided is a crystalline alloy having glass-forming ability which is formed of three or more elements having glass-forming ability, wherein the average grain size of the alloy is in a range of 0.1 ?m to 5 ?m and the alloy includes 5 at % to 20 at % of aluminum (Al), 15 at % to 40 at % of any one or more selected from copper (Cu) and nickel (Ni), and the remainder being zirconium (Zr).
    Type: Grant
    Filed: December 4, 2012
    Date of Patent: August 15, 2017
    Assignee: KOREA INSTITUTE OF INDUSTRIAL TECHNOLOGY
    Inventors: Seung-Yong Shin, Kyoung-Il Moon, Ju-Hyun Sun, Chang-Hun Lee
  • Patent number: 9725814
    Abstract: High purity manganese having a purity of 3N (99.9%) or more, wherein number of non-metal inclusions with a size of 0.5 ?m or more is 50000 or less per 1 g of the high purity manganese. A method for producing high purity manganese, wherein refining is performed using a raw material (secondary raw material) obtained by acid-washing a manganese raw material (primary raw material) so that the produced high purity manganese has a purity of 3N (99.9%) or more, and number of non-metal inclusions with a size of 0.5 ?m or more is 50000 or less per 1 g of the high purity manganese. The present invention provides a method for producing high purity metal manganese from commercially available manganese, and aims to obtain high purity metal manganese having a low LPC.
    Type: Grant
    Filed: July 18, 2012
    Date of Patent: August 8, 2017
    Assignee: JX Nippon Mining & Metals Corporation
    Inventors: Kazuto Yagi, Yuichiro Shindo, Eiji Hino
  • Patent number: 9724759
    Abstract: A method for producing an electrode material, involving: (i) a step of preparing a powder of a solid solution of Cr and a heat resistant material selected from the group consisting of Mo, W, Ta, Nb, V and Zr, wherein either a peak corresponding to Cr element or a peak corresponding to the heat resistant element, which are observed by X ray diffraction measurement made on the powder of the solid solution, disappears; (ii) a step of molding the powder of the solid solution to obtain a molded body and then sintering the molded body to produce a sintered body; and (iii) a Cu infiltration step of infiltrating the sintered body with Cu.
    Type: Grant
    Filed: February 17, 2015
    Date of Patent: August 8, 2017
    Assignee: MEIDENSHA CORPORATION
    Inventors: Kaoru Kitakizaki, Keita Ishikawa, Shota Hayashi, Nobutaka Suzuki, Kosuke Hasegawa
  • Patent number: 9728310
    Abstract: The present invention discloses a short process preparation technology of sintered NdFeB magnets from the NdFeB sludge, which relates to a field of recycle technology of NdFeB sludge. The present invention comprises the following steps: water bath distillation of organics in sludge, ultrasonic cleaning, calcium reduction and diffusion, ultrasonic rinsing in a magnetic field and drying, powders mixing and sintering. NdFeB sludge as raw materials was directly prepared from recycled sintered magnets with high magnetic properties. Most of the organics in the sludge could be removed by a vacuum distillation process with stepwise heating. The ultrasonic rinsing process in a magnetic field could effectively remove the remaining organics. The recycled sintered magnets exhibited good maximum energy product [(BH)max] of 35.26 MGOe. The present invention has important features, such as the short processing time, efficient environmental protection, high recycling rate and effective utilization rate of rare earth metals.
    Type: Grant
    Filed: April 19, 2016
    Date of Patent: August 8, 2017
    Assignees: BEIJING UNIVERSITY OF TECHNOLOGY, ANHUI EARTH-PANDA ADVANCE MAGNETIC MATERIAL CO., LTD.
    Inventors: Ming Yue, Weiqiang Liu, Xiantao Li, Meng Li, Min Liu, Dongtao Zhang, Xiaowen Yin, Xiulian Huang, Jingwu Chen, Xiaofei Yi
  • Patent number: 9721706
    Abstract: A value of a parameter Q represented by “Q=([Ti]/48+[V]/51+[Zr]/91+[Nb]/93)/([C]/12)” is not less than 0.9 nor more than 1.1, when contents of Ti, V, Zr, Nb, and C (mass %) are represented as [Ti], [V], [Zr], [Nb], and [C] respectively. A matrix of a metal structure is a ferrite phase, and the metal structure does not contain a non-recrystallized structure. An average grain size of ferrite grains constituting the ferrite phase is not less than 30 ?m nor more than 200 ?m. A precipitate containing at least one selected from the group consisting of Ti, V, Zr, and Nb exists with a density of 1 particle/?m3 or more in the ferrite grain. An average grain size of the precipitate is not less than 0.002 ?m nor more than 0.2 ?m.
    Type: Grant
    Filed: August 17, 2012
    Date of Patent: August 1, 2017
    Assignee: NIPPON STEEL & SUMITOMO METAL CORPORATION
    Inventors: Masahiro Fujikura, Yoshiyuki Ushigami, Tesshu Murakawa, Shinichi Kanao, Makoto Atake, Takeru Ichie, Kojiro Hori, Shinichi Matsui