Patents Examined by Christopher M. Babic
  • Patent number: 8993306
    Abstract: A method for at least partially separating viral and/or prokaryotic nucleic acids from eukaryotic nucleic acids from a biological sample includes re-suspending the cells in the presence of a chelating agent, lysis of the cells by chemical lysis, and/or mechanical lysis, neutralizing the cell lysate and separating the precipitated eukaryotic nucleic acids and obtaining the viral and/or prokaryotic nucleic acids. A kit includes a re-suspension buffer with chelating agent and optionally a saccharide and RNAse, lysis buffer including at least one base and a detergent and neutralizing buffer for at least partially separating viral and/or prokaryotic nucleic acids from eukaryotic nucleic acids from a biological sample. The acid constant of the weak anion defines the pH value and kosmotropic property of the salt (cation+anion) in conjunction with the detergent, which determines the protein solubility and precipitation.
    Type: Grant
    Filed: April 7, 2011
    Date of Patent: March 31, 2015
    Assignee: Greiner Bio-One GmbH
    Inventor: Walter Rudorfer
  • Patent number: 8986928
    Abstract: The invention relates to devices and methods for nanopore sequencing. The invention includes arrays of nanopores having incorporated electronic circuits, for example, in CMOS. In some cases, the arrays of nanopores comprise resistive openings for isolating the electronic signals for improved sequencing. Methods for controlling translocation of through the nanopore are disclosed.
    Type: Grant
    Filed: April 9, 2010
    Date of Patent: March 24, 2015
    Assignee: Pacific Biosciences of California, Inc.
    Inventors: Stephen Turner, Benjamin Flusberg, Mathieu Foquet, Hans Callebaut, Robert Sebra, Bidhan Chaudhuri, Jon Sorenson, Keith Bjornson, Adrian Fehr, Jonas Korlach, Robin Emig
  • Patent number: 8987174
    Abstract: The methods of the present invention provide methods for manufacturing a master substrate and methods for manufacturing replica arrays from the master substrate. The methods may be used, for example, directly to manufacture or “print” peptide arrays from a DNA array; however, the methods are applicable to a wide range of manufacturing applications for use any time multiple copies of an array needs to be printed.
    Type: Grant
    Filed: October 28, 2011
    Date of Patent: March 24, 2015
    Assignee: Prognosys Biosciences, Inc.
    Inventor: David A. Routenberg
  • Patent number: 8980637
    Abstract: A method for the parallel identification of one or more metabolite species within a biological sample is provided. The method comprises producing a first spectrum by subjecting the sample to a nuclear magnetic resonance analysis, the first spectrum containing individual spectral peaks representative of the one or more metabolite species contained within the sample; producing a second spectrum by subjecting the sample to a mass spectrometry analysis, the spectrum containing individual spectral peaks representative of the one or more metabolite species contained within the sample; subjecting each of the individual spectral peaks to a statistical pattern recognition analysis to identify the one or more metabolite species contained within the sample; and identifying the one or more metabolite species contained within the sample by analyzing the individual spectral peaks of the mass and nuclear magnetic resonance spectra.
    Type: Grant
    Filed: October 3, 2008
    Date of Patent: March 17, 2015
    Assignee: Purdue Research Foundation
    Inventors: Daniel M. Raftery, Zhengzheng Pan, Haiwei Gu
  • Patent number: 8980560
    Abstract: This invention provides a method for efficiently detecting DNA methylation. The method for detecting DNA methylation comprises subjecting DNA to bisulfite treatment, subjecting DNA after bisulfite treatment to a first PCR, subjecting the resultant to nested PCR, and subjecting amplified DNA to denaturing gradient gel electrophoresis.
    Type: Grant
    Filed: April 21, 2011
    Date of Patent: March 17, 2015
    Assignee: Kagoshima University
    Inventors: Seiya Yokoyama, Suguru Yonezawa
  • Patent number: 8969252
    Abstract: The present invention includes methods for producing magnetic nanocrystals by using a biological molecule that has been modified to possess an amino acid oligomer that is capable of specific binding to a magnetic material.
    Type: Grant
    Filed: April 7, 2011
    Date of Patent: March 3, 2015
    Assignee: Board of Regents, University of Texas System
    Inventors: Angela M. Belcher, Brian D. Reiss, Chuanbin Mao, Daniel J. Solis
  • Patent number: 8962240
    Abstract: A method and assembly for electrochemically identifying target nucleotide sequences. The method includes supplying a biological sample that may contain a predetermined target nucleotide sequence; supplying activatable amplification materials comprising free nucleotides to form replicated target nucleotide sequences; supplying an oxido-reducible compound capable of being inserted during replication between the nucleotides forming the replicated target sequences; and activating the activatable amplification materials before applying an electric field to the sample in order to activate the oxido-reducible compound. The replicated target sequences cause inhibition of electrochemical activity of the inserted oxido-reducible compound, and the presence of the predetermined target nucleotide sequence is determined in instances where the electric current decreases.
    Type: Grant
    Filed: June 4, 2009
    Date of Patent: February 24, 2015
    Assignees: Universite Paris Diderot-Paris 7, Centre National de la Recherche Scientifique (CNRS)
    Inventors: Benoît Limoges, Thibaut Defever, Damien Marchal
  • Patent number: 8962532
    Abstract: A method for manufacturing synthetic genes and combinatorial DNA and protein libraries, termed here Divide and Conquer-DNA synthesis (D&C-DNA synthesis) method. The method can be used in a systematic and automated way to synthesize any long DNA molecule and, more generally, any combinatorial molecular library having the mathematical property of being a regular set of strings. The D&C-DNA synthesis method is an algorithm design paradigm that works by recursively breaking down a problem into two or more sub-problems of the same type. The division of long DNA sequences is done in silico. The assembly of the sequence is done in vitro. The D&C-DNA synthesis method protocol consists of a tree, in which each node represents an intermediate sequence. The internal nodes are created in elongation reactions from their daughter nodes, and the leaves are synthesized directly. After each elongation only one DNA strand passes to the next level in the tree until receiving the final product.
    Type: Grant
    Filed: June 19, 2007
    Date of Patent: February 24, 2015
    Assignee: Yeda Research and Development Co. Ltd.
    Inventors: Ehud Y. Shapiro, Gregory Linshiz, Tuval Ben-Yehezkel, Shai Kaplan, Rivka Adar, Ilan Gronau, Sivan Tuvi
  • Patent number: 8959984
    Abstract: This invention relates to methods for the evaluation and/or quantification of the binding affinity of small molecules or other compounds to target components contained within an analyte, such as target proteins contained within the proteome of a cell or tissue.
    Type: Grant
    Filed: September 26, 2008
    Date of Patent: February 24, 2015
    Assignee: Max-Planck-Gesellschaft zur Forderung der Wissenschaften E.V.
    Inventors: Henrik Daub, Michaela Bairlein, Kirti Sharma, Klaus Godl, Andreas Tebbe, Christoph Weber
  • Patent number: 8957002
    Abstract: A sensor chip and detection device are disclosed. The sensor chip includes a substrate, at least a portion of which is covered by a metal nanoparticle film; a first nucleic acid molecule that is characterized by being able to (i) self-anneal into a hairpin conformation and (ii) hybridize specifically to a target nucleic acid molecule, the first nucleic acid molecule having first and second ends, which first end is tethered to the metal nanoparticle film; and a first fluorophore bound to the second end of the first nucleic molecule. When the first nucleic acid molecule is in the hairpin conformation, the metal nanoparticle film substantially quenches fluorescent emissions by the first fluorophore, and when the first nucleic acid molecule is in a non-hairpin conformation fluorescent emissions by the first fluorophore are surface plasmon-enhanced.
    Type: Grant
    Filed: November 5, 2008
    Date of Patent: February 17, 2015
    Assignee: University of Rochester
    Inventors: Benjamin L. Miller, Todd D. Krauss, Lewis J. Rothberg, Hsin-I Peng
  • Patent number: 8945940
    Abstract: The present invention provides variable mass labeling reagents, a set of the variable mass labeling reagents, and a multiplexed set of variable mass labeling reagents.
    Type: Grant
    Filed: July 10, 2009
    Date of Patent: February 3, 2015
    Assignee: Postech Academy-Industry Foundation
    Inventors: Seung Koo Shin, Jongcheol Seo, Min-Soo Suh, Hye-Joo Yoon
  • Patent number: 8946129
    Abstract: Provided is a set of mass labels, each mass label in the set comprising a mass marker moiety attached via a cleavable linker to a mass normalization moiety, each mass label in the set having a common mass; wherein the set comprises a plurality of groups of mass labels, the mass of the mass marker moiety being the same for mass labels within a group, the mass of the mass marker moiety being different between groups; the mass marker moiety is capable of fragmentation into two or three fragments; and the mass of at least one fragment of the mass marker moiety differs between mass labels within a group.
    Type: Grant
    Filed: September 11, 2006
    Date of Patent: February 3, 2015
    Assignee: Electrophoretics Limited
    Inventor: Jürgen Schäfer
  • Patent number: 8945834
    Abstract: Disclosed herein are processes for collecting nucleic acids from particulate samples. One embodiment disclosed herein relates to the use of ultrasonic energy to simultaneously shear large nucleic acid molecules and large particulates to very small sizes prior to or during a chemical binding step to a nucleic acid binding surface. Another embodiment involves crushing the nucleic acid binding surface prior to eluting the bound nucleic acid molecules to enable better wetting of the nucleic acid binding surface and easier diffusion of bound nucleic acid molecules out of the nucleic acid binding surface.
    Type: Grant
    Filed: March 14, 2012
    Date of Patent: February 3, 2015
    Assignee: E. I. du Pont de Nemours and Company
    Inventors: T. Joseph Dennes, Michael P. Perry
  • Patent number: 8945833
    Abstract: The present invention relates to a method for determining drug resistance mutations in any of the non-structural protein regions NS3 to NS5B of Hepatitis C Virus (HCV) for genotypes 1 to 6, more in particular for subtype specific genotypes 1a, 1b, 2a, 2b, 3a, 4a and 4d.
    Type: Grant
    Filed: October 6, 2009
    Date of Patent: February 3, 2015
    Inventors: Lieven Jozef Stuyver, Diana Koletzki, Jan Martin Berke, Ina Isabel Vandenbroucke, Leen Roger Vijgen
  • Patent number: 8927465
    Abstract: A process for making a micro-array. The process comprises the step of depositing a population of microbeads on a substrate having at least one fiducial. The population being comprised of at least two sub-populations, preferably multiple sub-populations, each comprising a known active agent capable of specific binding with at least one target analyte. The said subpopulations are deposited sequentially and at discrete periods of each other. The process also comprises the step of making images of the substrate after deposition of each subpopulation. The images are then compared using the fiducial as a reference to thereby determine the location of each microbead and to identify the subpopulation, and its known active agent, based on differences between each image. Also disclosed in a system for using the microarray.
    Type: Grant
    Filed: August 3, 2007
    Date of Patent: January 6, 2015
    Assignee: National University University of Singapore
    Inventors: Dieter Trau, Wen-Tso Liu, Kian Kok Johnson Ng
  • Patent number: 8921283
    Abstract: Methods and apparatuses for generating microscopic patterns of macromolecules such as proteins on a solid surface are described. Pulsed laser light is used to alter surface portions of a solid surface substrate in a predetermined pattern, by removing macromolecules from surface portions of the substrate where the light is focused. The same wavelength light at lower intensity can be used to visualize the removal by its reflection from the specimen surface along the path to the detector. Select macromolecules introduced to the substrate selectively adhere to select surface portions, thereby depositing macromolecules in the predetermined pattern on the solid surface.
    Type: Grant
    Filed: October 30, 2007
    Date of Patent: December 30, 2014
    Assignee: Washington University
    Inventors: Paul Bridgman, Stephen Turney
  • Patent number: 8916344
    Abstract: A method for detecting a methylated genomic locus is provided. In certain embodiments, the method comprises: a) treating a nucleic acid sample that contains both unmethylated and methylated copies of a genomic locus with an agent that modifies cytosine to uracil to produce a treated nucleic acid; b) amplifying a product from the treated nucleic acid using a first primer and a second primer, wherein the first primer hybridizes to a site in the locus that contain methylcytosines and the amplifying preferentially amplifies the methylated copies of the genomic locus, to produce an amplified sample; and c) detecting the presence of amplified methylated copies of the genomic locus in the amplified sample using a flap assay that employs an invasive oligonucleotide having a 3? terminal G or C nucleotide that corresponds to a site of methylation in the genomic locus.
    Type: Grant
    Filed: November 15, 2010
    Date of Patent: December 23, 2014
    Assignee: Exact Sciences Corporation
    Inventors: Hongzhi Zou, Graham P. Lidgard, Michael J. Domanico, Hatim Allawi
  • Patent number: 8906619
    Abstract: The invention concerns nucleic acid molecules derived from novel hepatitis D virus strains or isolates constituting genotypes different from known I, II and III genotypes, their fragments, corresponding proteins and their uses as diagnostic reagents. The invention also concerns a method for sensitive diagnosis of the hepatitis D virus (or delta hepatitis virus) and a method for epidemiologic monitoring of HDV-related infections.
    Type: Grant
    Filed: February 1, 2008
    Date of Patent: December 9, 2014
    Assignee: Assistance Publique—Hopitaux de Paris
    Inventors: Paul Deny, Nadjia Radjef, Patricia Huc-Anais
  • Patent number: 8906831
    Abstract: Methods for non-random loading of single analyte molecules into array structures are provided. The methods allow for distribution of a population of target molecules into a plurality of size confined regions such as wells. Sizing moieties are linked to individual target molecules. The sizing moieties are of sufficient size, relative to the size-confined reaction or observation regions, such that only a selected number of sizing moieties will fit into the size confined regions. The confined regions and the sizing moieties or target molecules comprise a selected charge that allow for controlling the loading of the sizing moities.
    Type: Grant
    Filed: March 30, 2009
    Date of Patent: December 9, 2014
    Assignee: Pacific Biosciences of California, Inc.
    Inventors: John Eid, Stephen Turner, Ravi Dalal, Benjamin Flusberg, Jonas Korlach, Steven Lin, Adrian Fehr, Fred Christians, Robin Emig, Jeremy Gray, Robert Sebra, Lei Sun, Stephen Dudek
  • Patent number: 8906832
    Abstract: A method, system and device to identify, study and/or mimic carbohydrate-protein interactions on cell surfaces and in solution measured by a glycan microarray. In some instances the method, system and device uses very small quantities of carbohydrate as low as attomol. In some instances the system, method and device is high-throughput. The small quantity sensitivity may allow for close placement of carbohydrate array members wherein due to close proximity multivalent interactions with proteins may be identified.
    Type: Grant
    Filed: April 14, 2009
    Date of Patent: December 9, 2014
    Assignee: Academia Sinica
    Inventors: Chi-Huey Wong, Pi-Hui Liang