Patents Examined by Christopher R Legendre
  • Patent number: 9945387
    Abstract: A method for fan speed control for a condenser fan in an air conditioning system includes determining a refrigerant condition at an inlet of a compressor by a condenser fan speed control module; determining a refrigerant condition at an outlet of the compressor by the condenser fan speed control module; determining a parabolic curve of a relationship between an air conditioning system performance metric and a speed of the condenser fan based on the determined inlet condition and the determined outlet condition by the condenser fan speed control module; identifying an optimum condenser fan speed based on a vertex of the parabolic curve by the condenser fan speed control module; and controlling the speed of the condenser fan to meet the optimum fan speed by the condenser fan speed control module.
    Type: Grant
    Filed: June 20, 2012
    Date of Patent: April 17, 2018
    Assignee: CARRIER CORPORATION
    Inventors: Michael Balistreri, Eugene D. Daddis, Jr., Kenneth J. Nieva
  • Patent number: 9932933
    Abstract: According to an example embodiment, a gas turbine engine assembly includes, among other things, a fan that has a plurality of fan blades. A diameter of the fan has a dimension D that is based on a dimension of the fan blades. Each fan blade has a leading edge. An inlet portion is situated forward of the fan. A length of the inlet portion has a dimension L between a location of the leading edge of at least some of the fan blades and a forward edge on the inlet portion. A dimensional relationship of L/D is between about 0.2 and about 0.45.
    Type: Grant
    Filed: November 27, 2013
    Date of Patent: April 3, 2018
    Assignee: United Technologies Corporation
    Inventors: Wesley K. Lord, Robert E. Malecki, Yuan J. Qiu, Becky E. Rose, Jonathan Gilson
  • Patent number: 9932836
    Abstract: A turbine vane for a rotary turbomachine has a turbine blade delimited by a concave pressure-side wall and a convex suction-side wall which are connected in the region of a vane front edge which can be assigned to the turbine blade and enclose a cavity which extends in the longitudinal extent of the vane front edge and is delimited on the inner wall by the pressure-side wall and the suction-side wall in the region of the vane front edge and by an intermediate wall which extends in the longitudinal direction to the vane front edge and connects the suction-side wall and the pressure-side wall on the inner wall. The intermediate wall has a perforation at least in sections in the connecting region to the suction-side wall and/or pressure-side wall, in order to increase the elasticity of the intermediate wall.
    Type: Grant
    Filed: September 19, 2014
    Date of Patent: April 3, 2018
    Assignee: ANSALDO ENERGIA IP UK LIMITED
    Inventors: Martin Schnieder, Sergey Shchukin
  • Patent number: 9932904
    Abstract: An exhaust gas turbocharger may include a compressor housing and a turbine housing. The turbine housing may be connected to the compressor housing via a plurality of spacer pins composed of a heat-insulating material. The plurality of spacer pins may respectively include a head and at least one axial pin.
    Type: Grant
    Filed: March 31, 2015
    Date of Patent: April 3, 2018
    Assignee: Bosch MahleTurbo Systems GmbH & Co. KG
    Inventor: Michal Klusacek
  • Patent number: 9920653
    Abstract: According to an example embodiment, a gas turbine engine assembly includes, among other things, a fan that has a plurality of fan blades. A diameter of the fan has a dimension D that is based on a dimension of the fan blades. Each fan blade has a leading edge. An inlet portion is situated forward of the fan. A length of the inlet portion has a dimension L between a location of the leading edge of at least some of the fan blades and a forward edge on the inlet portion. A dimensional relationship of L/D is between about 0.2 and 0.45.
    Type: Grant
    Filed: December 20, 2012
    Date of Patent: March 20, 2018
    Assignee: United Technologies Corporation
    Inventors: Wesley K. Lord, Robert E. Malecki, Yuan J. Qiu, Becky E. Rose, Jonathan Gilson
  • Patent number: 9920630
    Abstract: A wind turbine blade (1) is formed of a fiber-reinforced composite material comprising a polymer matrix. The blade (1) further comprises a first region (11), a second region (12) and a transition region (13) between the first and the second region (11, 12). The first region (11) is reinforced predominantly with a first reinforcement fiber material (21). The second region (12) is reinforced predominantly with a second reinforcement fiber material (22). The first and the second reinforcement fiber material differ from each other and has differing E-modulus. The transition region (13) additionally comprises a third type of reinforcement fiber material (23) differing from both the first and the second reinforcement fiber material (21; 22) and having an E-modulus between that of the first reinforcement fiber material (21) and that of the second reinforcement fiber material (22).
    Type: Grant
    Filed: July 16, 2012
    Date of Patent: March 20, 2018
    Assignee: LM WP PATENT HOLDING A/S
    Inventors: Martin Dahl, Bjarne Krab Mortensen, Morten Olesen
  • Patent number: 9903342
    Abstract: The invention provides a wind turbine including a nacelle, a rotor having at least one blade attached to a hub, and an electrical supply structure for supplying electrical power from the nacelle to the rotor. The rotor is rotatably connected to the nacelle about an axis of rotation. The supply structure comprises a switch which has a connected mode in which the nacelle and the rotor are electrically connected, and a disconnected mode in which the nacelle and the rotor are electrically disconnected. Furthermore, the switch is adapted to change from the disconnected mode to the connected mode when the rotor does not rotate.
    Type: Grant
    Filed: June 20, 2013
    Date of Patent: February 27, 2018
    Assignee: Vestas Wind Systems A/S
    Inventors: Torben Friis Baun, Jesper Lykkegaard Neubauer
  • Patent number: 9897090
    Abstract: A pump assembly and components therefor including an impeller which has flow inducer elements on an inner surface of a front shroud thereof, a flow directing device or strainer having passageways for delivering material to the impeller and at least one flow circulating passageway and a pump casing having an intake section with flow distribution vanes in the region of a feed opening adjacent the intake section.
    Type: Grant
    Filed: December 31, 2013
    Date of Patent: February 20, 2018
    Assignee: Weir Minerals Australia Ltd.
    Inventors: Kevin Edward Burgess, Garth Norman Cantrill
  • Patent number: 9890660
    Abstract: A spacer for a diaphragm assembly coupling is disclosed. The spacer includes a base, a spacing portion, and a spacing body edge. The base includes a base body including a base edge. The spacing portion includes a spacing body and a spacing flange. The spacing body extends from the base and includes an outer diameter that is smaller than that of the base. The spacing flange extends outward from the spacing body and is spaced apart from the base. The spacing body edge is located at an intersection of the spacing body and the base body. A reference line extending from the spacing body edge to the base edge forms an angle from 10 to 30 degrees with the spacer axis.
    Type: Grant
    Filed: September 18, 2014
    Date of Patent: February 13, 2018
    Assignee: Solar Turbines Incorporated
    Inventor: Scott L. Stafford
  • Patent number: 9879650
    Abstract: A system and method for a vertical axis wind turbine (VAWT) is described which can provide the basis for a new and improved wind turbine design suitable for a range of different power classes such as from 4 kilowatts to 10 megawatts. A vertical blade of chord length C is attached to a central hub via a main support strut of chord length C. The main support strut comprises two sections: a blade-support-section and a counterweight-support-section. Both the blade-support-section and the counter-weight-support-section have a blunt leading edge and a tapered trailing edge with the profile reversing either side of the hub axis. Two control struts comprising aerodynamic profiles support the blade wherein one control strut connects to the upper surface of the main support strut and the other control strut connects to the lower surface of the main support strut hub. The main support strut and the control struts provide lift to the wind turbine and reduce drag.
    Type: Grant
    Filed: April 12, 2011
    Date of Patent: January 30, 2018
    Inventors: Philip B. Wesby, Christopher Turner
  • Patent number: 9863427
    Abstract: A barrel-type multistage pump with uniformed velocity distribution in an axial direction, on a cross-section of a rotating flow channel, to suppress fluid loss in a last stage, and including: plural stages of centrifugal impellers, covered by an inner casing; diffusers and return channels provided on downstream sides of the centrifugal impellers, to guide the flow of a fluid to a centrifugal impeller in the next stage, and return vanes arranged at respective return channels; a cylindrical outer casing having a suction pipe and a discharge pipe, wherein a cylindrical rotating flow channel connected to a discharge opening is provided between an outer casing and an inner casing, a connecting channel to connect between a rotating flow channel and diffusers.
    Type: Grant
    Filed: June 23, 2015
    Date of Patent: January 9, 2018
    Assignee: Hitachi, Ltd.
    Inventors: Takahide Nagahara, Daichi Torii, Tetsuya Yoshida
  • Patent number: 9856784
    Abstract: An exhaust turbocharger has a wastegate valve and a thrust circulation valve, which can be actuated by a single, common actuator. The actuation of the thrust circulation valve is dependent on the positioning velocity of the actuator.
    Type: Grant
    Filed: March 7, 2013
    Date of Patent: January 2, 2018
    Assignee: Continental Automotive GmbH
    Inventors: Florian Kronschnabl, Roland Herfurth, Christoph Sparrer
  • Patent number: 9856884
    Abstract: A gas turbine engine is disclosed having an air injection system useful to supply a relatively pressurized air to a flow path of a compressor. The air injection system includes a port cover operable to open and close a port through which the air can flow to the compressor from a relatively pressurized source. The port cover extends circumferentially around the gas turbine engine and can include a portion that is anchored and an opposite portion coupled to an actuator. Movement of the actuator causes the port cover to open and close the port. Biasing members can be used to urge the port cover into one of an open and closed position against the movement of the actuator.
    Type: Grant
    Filed: June 27, 2014
    Date of Patent: January 2, 2018
    Assignee: Rolls-Royce North American Technologies Inc.
    Inventors: Douglas David Dierksmeier, Daniel Kent Vetters
  • Patent number: 9845786
    Abstract: The present disclosure is directed to spar caps for wind turbine rotor blades and methods of manufacturing same. The spar cap includes a plurality of plies having varying lengths that are arranged in a tapered configuration. Further, the tapered configuration includes at least an upper portion and a lower portion. The upper portion is configured for attachment to at least one of a pressure side or a suction side of the rotor blade. Further, one or more plies of the upper and lower portions tapers towards an intermediate ply configured between the upper and lower portions of the spar cap. In addition, the intermediate ply has a length that is shorter than the plies in the upper and lower portions.
    Type: Grant
    Filed: December 12, 2014
    Date of Patent: December 19, 2017
    Assignee: General Electric Company
    Inventors: Aaron A. Yarbrough, Christopher Daniel Caruso
  • Patent number: 9835088
    Abstract: The disclosure pertains to a cooled wall for separating a hot gas flow path of a gas turbine from a cooling flow including at least one turbulator rib extending from the wall into the cooling flow, and having a height, a width for providing heat transfer enhancement for the cooled wall. The turbulator rib has filets at its root with a filet radius. In order to increase the heat transfer enhancement of the turbulator rib, the filet at the downstream side of turbulator rib is extending into the cooled wall with a penetration depth. Further, the disclosure relates to specific embodiments in which the cooled wall with turbulator ribs is configured as the sidewall of an airfoil, a combustor wall or a heat shield.
    Type: Grant
    Filed: September 19, 2014
    Date of Patent: December 5, 2017
    Assignee: ANSALDO ENERGIA SWITZERLAND AG
    Inventors: Sergey Shchukin, Robert Marmilic
  • Patent number: 9816443
    Abstract: A gas turbine engine includes an engine centerline longitudinal axis and a fan section including a fan with fan blades and rotatable about the engine centerline longitudinal axis. A low corrected fan tip speed less than about 1400 ft/sec and the low corrected fan tip speed is an actual fan tip speed determined at an ambient temperature divided by [(Tram ° R)/(518.7 ° R)]0.5, where T represents the ambient temperature in degrees Rankine. A bypass ratio greater than about 11 and a speed reduction device having a gear system with a gear ratio. A low and high pressure turbine in communication with a first and second shaft, respectively. The first and second shafts are concentric and mounted via at least one of the bearing systems for rotation about the engine centerline longitudinal axis and the first shaft is in communication with the fan through the speed reduction device and the low pressure turbine includes four stages.
    Type: Grant
    Filed: October 28, 2016
    Date of Patent: November 14, 2017
    Assignee: UNITED TECHNOLOGIES CORPORATION
    Inventors: William G. Sheridan, Karl L. Hasel
  • Patent number: 9816391
    Abstract: The present application thus provides a cleaning system for use with a compressor of a turbine engine. The cleaning system may include a wash nozzle positioned about the compressor and a spheroid injection port to inject a number of spheroids therein.
    Type: Grant
    Filed: September 23, 2014
    Date of Patent: November 14, 2017
    Assignee: GENERAL ELECTRIC COMPANY
    Inventors: Sanji Ekanayake, Alston Ilford Scipio, Julio Enrique Mestroni, Timothy Joseph Rehg
  • Patent number: 9810086
    Abstract: A shroud apparatus for a gas turbine engine includes: an annular shroud segment having an arcuate bottom wall defining an arcuate inner flowpath surface, spaced-apart forward and aft walls extending radially outward from the bottom wall, and spaced-apart side walls extending radially outward from the bottom wall and between the forward and aft walls, each side wall defining an end face which includes: an axial slot extending in a generally axial direction along the end face; a first radial slot extending in a generally radial direction along the end face, and intersecting the axial slot; an axial spline seal received in the axial slot; and a first radial spline seal having an L-shape with radial and axial legs, the radial leg being substantially longer than the axial leg, wherein the radial leg is received in the first radial slot, and the axial leg is received in the axial slot.
    Type: Grant
    Filed: April 11, 2012
    Date of Patent: November 7, 2017
    Assignee: General Electric Company
    Inventors: Victor Hugo Silva Correia, Christopher Michael Ceglio, David Scott Stapleton
  • Patent number: 9810082
    Abstract: A gas turbine stator for aircraft engines has a blade array with a plurality of blades constituted by a series of first blades and a series of second blades with different geometries; the array is formed by a plurality of sectors, each having an inner portion, an outer portion, at least one first blade and a least one second blade, and each defined by a body made in one piece; a single first blade is alternated with a single second blade for the entire circumference of the stator.
    Type: Grant
    Filed: August 3, 2012
    Date of Patent: November 7, 2017
    Assignee: GE AVIO S.R.L.
    Inventor: Paolo Calza
  • Patent number: 9784285
    Abstract: Variable stator vane assemblies and stator vanes thereof having a local swept leading edge are provided. The variable stator vane comprises an airfoil disposed between spaced apart inner and outer buttons centered about a rotational axis. The inner and outer buttons each have a button forward edge portion. The airfoil includes leading and trailing edges, pressure and suction sides, and a root and a tip. The leading edge includes a local forward sweep at the root, a local aft sweep at the tip, or both, thereby forming a locally swept leading edge thereat. The button forward edge portion of one or both of the inner and outer buttons is substantially coextensive with the locally swept leading edge. Methods are also provided for minimizing endwall leakage in the variable stator vane assembly using the same.
    Type: Grant
    Filed: September 12, 2014
    Date of Patent: October 10, 2017
    Assignee: HONEYWELL INTERNATIONAL INC.
    Inventors: Bruce David Reynolds, Timothy Gentry, Richard David Conner