Patents Examined by Chuong P Nguyen
  • Patent number: 10809391
    Abstract: A receiver or method uses an offset vector to provide seamless switching between a real-time kinematic (RTK) mode and a precise positioning mode (e.g., precise point positioning, PPP) mode. An offset module or data processor is arranged to determine an offset between precise position and the RTK position estimate. Upon loss of the RTK signal, switching to a precise position mode based a last available RTK position (e.g., if the precise position mode is converged on a position solution with resolved ambiguities of the carrier phase), wherein the next precise position estimate is compensated by the offset or reference frame bias to avoid a jump or discontinuity in the next precise position estimate.
    Type: Grant
    Filed: March 18, 2016
    Date of Patent: October 20, 2020
    Assignee: DEERE & COMPANY
    Inventors: F. Adhika Pradipta Lie, Michael A. Zeitzew, Yunfeng Shao, Liwen L. Dai
  • Patent number: 10802155
    Abstract: A method and a system for defecting cross correlation in a satellite navigation receiver (SNR) in real time are provided. The SNR parallelly receives navigation signals from multiple satellites via multiple input channels. The SNR extracts ephemeris data from sub-frames of navigation data of each of the navigation signals. The SNR compares the ephemeris data of each navigation signal with the ephemeris data of another navigation signal. The SNR detects cross correlation between the navigation signals when the ephemeris data comparison results in a match and discards the navigation signal with low signal strength. The SNR also retrieves a ranging code from the sub-frames of navigation data of each navigation signal. The SNR compares the ranging code with a pre-programmed satellite identity code of a corresponding satellite. The SNR detects cross correlation when the code comparison results in a mismatch and discards the navigation signal with the mismatched ranging code.
    Type: Grant
    Filed: November 14, 2017
    Date of Patent: October 13, 2020
    Assignee: ACCORD IDEATION PRIVATE LIMITED
    Inventor: Vyasaraj Guru Rao
  • Patent number: 10795028
    Abstract: An apparatus receives values of parameters defining an orbit of a satellite of a satellite navigation system for a validity period. The apparatus furthermore determines whether a received value of at least one parameter of a predetermined set of the parameters is saturated. The apparatus then takes into account whether a received value of at least one parameter of the predetermined set of parameters is determined to be saturated in a process of extending the validity period of the received values of parameters.
    Type: Grant
    Filed: December 20, 2016
    Date of Patent: October 6, 2020
    Assignee: HERE Global B.V.
    Inventor: Pekka-Henrik Niemenlehto
  • Patent number: 10795016
    Abstract: The invention refers to a method and a base station for validating information regarding the position of a target-aircraft, the information contained in an ADS-B signal periodically broadcast by the target-aircraft, with the method being executed in the ADS-B base station.
    Type: Grant
    Filed: December 13, 2017
    Date of Patent: October 6, 2020
    Assignee: THALES MANAGEMENT & SERVICES DEUTSCHLAND GMBH
    Inventors: Scott Hauswald, Holger Neufeldt
  • Patent number: 10788586
    Abstract: Multichannel inertial measuring unit (MIMU) contains sensors for measurements of vector and scalar parameters of motion (angular speed, specific acceleration, magnetic field, etc.), and independent hardware interfaces to transmit measured data. Measured information is read out from MIMU via each hardware interface irrespective of other hardware interfaces. The format of data presentation for each hardware interface is randomly selected from a predefined list. Measurements from MIMU are generated by a set of sensors within a common timescale. The timescale for synchronization of sensor measurements can be both generated within MIMU by a stable clock generator and transmitted to MIMU from outside, including from one of users of measured data. MIMU also can generate synchronization signals to transmit its timescale to external users.
    Type: Grant
    Filed: December 7, 2017
    Date of Patent: September 29, 2020
    Assignee: Topcon Positioning Systems, Inc.
    Inventors: Nikolay Nikolaevich Vasilyuk, Sergey Ivanovich Tychinskiy, Alexandr Vladimirovich Doronin, Dmitry Konstantinovich Tokarev
  • Patent number: 10777885
    Abstract: A low sidelobe beam forming method and dual-beam antenna schematic are disclosed, which may preferably be used for 3-sector and 6-sector cellular communication system. Complete antenna combines 2-, 3- or -4 columns dual-beam sub-arrays (modules) with improved beam-forming network (BFN). The modules may be used as part of an array, or as an independent 2-beam antenna. By integrating different types of modules to form a complete array, the present invention provides an improved dual-beam antenna with improved azimuth sidelobe suppression in a wide frequency band of operation, with improved coverage of a desired cellular sector and with less interference being created with other cells. Advantageously, a better cell efficiency is realized with up to 95% of the radiated power being directed in a desired cellular sector.
    Type: Grant
    Filed: October 19, 2017
    Date of Patent: September 15, 2020
    Assignee: CommScope Technologies LLC
    Inventors: Igor E. Timofeev, Martin L. Zimmerman, Huy Cao, Yanping Hua
  • Patent number: 10777883
    Abstract: Various embodiments of the present disclosure provide an antenna system including a first set of receive antenna elements and a second set of transmit antenna elements. Each receive antenna element is paired with one of the transmit elements. Paired receive and transmit antenna elements point in the same azimuthal direction, and the receive antenna element feeds its paired transmit antenna element. Each receive antenna element and each transmit antenna element has a phase center, and the phase centers of the receive and transmit antenna elements are all positioned substantially along the same axis. The receive and transmit elements are arranged in a phase-conjugate configuration such that, for each pair of receive and transmit antenna elements, those receive and transmit antenna elements are altitudinally spaced substantially the same distance from a plane through the antenna system.
    Type: Grant
    Filed: October 24, 2017
    Date of Patent: September 15, 2020
    Assignee: Envisioneering, Inc.
    Inventors: Jeffrey Owen Coleman, Mark Dorsey, Mark Parent, Gary Hoover, Phil Girardi
  • Patent number: 10768265
    Abstract: A determination of an angle of arrival of radiofrequency (RF) radiation can be made using compressive sensing techniques to inform a receiver portion of a radar system using fewer measurements and samples of the received signal. A method for compressive sensing at an array antenna includes forming a plurality subarrays of array elements from the array antenna such that each subarray includes two or more array elements, capturing data at the plurality of subarrays of array elements, modulating phase properties of the data captured at each of the subarrays, combining the modulated data from each of the plurality of subarrays to form a measurement having phase and magnitude measurements corresponding to the combined modulated data and determining angle of arrival information for the data using the measurement matrix.
    Type: Grant
    Filed: November 9, 2016
    Date of Patent: September 8, 2020
    Assignee: Raytheon Company
    Inventor: Matthew Granato
  • Patent number: 10756428
    Abstract: Systems and methods are provided for performing alignment calibration of an RF antenna in satellite communications. Data is received that is representative of inertial navigation system and gimbal angle measurement signals. The received data is collected while a vehicle is operated in a reduced yaw motion and while the RF antenna is tracking a satellite. Equations are used that describe a mathematical relationship among the misalignments, offsets, and latency mismatch to the antenna gimbal control servo measurements. Estimates are generated for certain errors involved in the alignment process. The generated estimates are provided for pointing the RF antenna.
    Type: Grant
    Filed: April 20, 2017
    Date of Patent: August 25, 2020
    Assignee: General Dynamics Mission Systems, Inc.
    Inventor: James M. B. Royalty
  • Patent number: 10756445
    Abstract: A switchable transmit and receive phased array antenna (“STRPAA”) is disclosed. The STRPAA includes a housing, a plurality of radiating elements, and a plurality of transmit and receive (“T/R”) modules. The STRPAA may also include either a first multilayer printed wiring board (“MLPWB”) configured to produce a first elliptical polarization or a second MLPWB configured to produce a second elliptical polarization within the housing.
    Type: Grant
    Filed: January 31, 2017
    Date of Patent: August 25, 2020
    Assignee: THE BOEING COMPANY
    Inventors: Ming Chen, Jimmy S. Takeuchi, Rodney D. Cameron, Michael S. Foster, Mark R. Davis
  • Patent number: 10754043
    Abstract: A receiver and a receiving method for receiving wideband binary-offset-carrier modulated signals. The receiver includes a tracking apparatus which includes an upper sideband processor operable to generate upper sideband correlations through correlating a local upper sideband replica against a received navigation signal, a lower sideband processor operable to generate lower sideband correlations through correlating a local lower sideband replica against the received navigation signal, and an estimator operable to determine a delay estimate based on the upper sideband correlations and the lower sideband correlations.
    Type: Grant
    Filed: September 16, 2015
    Date of Patent: August 25, 2020
    Assignee: TSINGHUA UNIVERSITY
    Inventors: Yonghui Zhu, Xiaowei Cui, Mingquan Lu
  • Patent number: 10754042
    Abstract: A device for producing timing information comprises equipment (101) that extracts first preliminary timing information from a first circular polarized component of a radio signal and second preliminary timing information from a second circular polarized component of the radio signal. The second circular polarized component has an opposite handedness and a time-delay with respect to the first circular polarized component. The device comprises a processing system (102) that produces the timing information based on the first preliminary timing information and/or the second preliminary timing information, and uses stored correction data for reducing the effect of the time-delay on the timing information when using the second preliminary timing information for producing the timing information. Thus, the timing information corresponds to the first preliminary timing information also when the timing information is produced based on the second preliminary timing information.
    Type: Grant
    Filed: July 24, 2017
    Date of Patent: August 25, 2020
    Assignee: ADVA OPTICAL NETWORKING SE
    Inventor: Kenneth Hann
  • Patent number: 10754045
    Abstract: A handheld GNSS device having a GNSS antenna, memory, and a display receives a first GNSS signal at the GNSS antenna and determines a first position of a point of interest based on the GNSS signal. The first position is stored in memory. A second GNSS signal is received at the GNSS antenna and a second position of the point of interest is determined based on the second GNSS signal. The second position is stored in memory. A third GNSS signal is received at the GNSS antenna and a third position of the point of interest is determined based on the third GNSS signal. The third position is stored in memory. A determination is made whether the first, second, and third positions meet a clustering criteria. In accordance with a determination that the first, second, and third positions meet the clustering criteria, a first cluster position is stored. The first cluster position is based on the first, second, and third positions.
    Type: Grant
    Filed: August 9, 2017
    Date of Patent: August 25, 2020
    Assignee: JAVAD GNSS, INC.
    Inventor: Javad Ashjaee
  • Patent number: 10739468
    Abstract: A signal receiver method to achieve satellite position fix by improving satellite orbit prediction includes: acquiring satellite signals and navigation data and calculating a position solution, which includes predicting the state or orbit of one or more satellites. The prediction includes using a model of the solar radiation pressure operating on a selected satellite.
    Type: Grant
    Filed: July 27, 2016
    Date of Patent: August 11, 2020
    Assignee: STMICROELECTRONICS S.r.l.
    Inventor: Giovanni Gogliettino
  • Patent number: 10732297
    Abstract: Various techniques related to determining whether mobile devices are associated are described. The techniques can include receiving first position information from a first device and receiving second position information from a second device. The techniques can also include comparing the first position information to the second position information over an overlapping time period. The techniques can additional include determining, based on the comparing, whether first position information and the second position information indicate that the first device and the second device are collocated during the overlapping time period. The techniques can include, upon determining that the first position information and the second position information indicate that the first device and the second device are collocated during the overlapping time period, determining that the first device and the second device are associated.
    Type: Grant
    Filed: August 29, 2017
    Date of Patent: August 4, 2020
    Assignee: FARADAY&FUTURE INC.
    Inventor: Xiufeng Song
  • Patent number: 10732257
    Abstract: The vehicle includes: a plurality of vehicle antennas configured to receive a plurality of signals, respectively, from a remote control device; and a vehicle controller configured to: i) calculate an arrival distance between each of the plurality of vehicle antennas and the remote control device based on an arrival time of the plurality of signals received by the plurality of vehicle antennas, ii) extract an initial arrival pulse signal having a first reference value or higher from among at least one pulse signal contained in each of the plurality of signals, iii) extract at least one valid signal having a maximum value corresponding to a second reference value or higher from among the plurality of signals received by the plurality of vehicle antennas, iv) calculate an arrival distance of an initial arrival pulse signal contained in the at least one valid signal, and v) estimate a position of the remote control device based on the arrival distance.
    Type: Grant
    Filed: May 23, 2017
    Date of Patent: August 4, 2020
    Assignees: Hyundai Motor Company, Kia Motors Corporation, Gwangju Institute of Science and Technology
    Inventors: Jihye Lee, Sinjung Kim, Jongyoung Lee, Daeyeon Kim, Kangwook Kim
  • Patent number: 10725142
    Abstract: Systems and methods are provided in which a direction of arrival of a radio frequency (RF) signal received by a plurality of antennas is determined. A plurality of first converter receives RF signals from the plurality of antennas and outputs a minimum of a first optical signal and a second optical signal each modulated by their corresponding RF signal. A plurality of second converters receives a minimum of the first optical signal via a first optical channel that introduces a first delay and the second optical signal via a second optical channel that introduces a second delay. The second converter outputs a first RF signal that corresponds to the RF modulation on the first optical signal and a second RF signal that corresponds to the RF modulation on the second optical signal. A switch serially receives, from the second converter outputs, the first RF signal and the second RF signal.
    Type: Grant
    Filed: February 1, 2017
    Date of Patent: July 28, 2020
    Assignee: Cobham Advanced Electronic Solutions, Inc.
    Inventor: Arnold N. Feineman
  • Patent number: 10725185
    Abstract: A global navigation satellite system (GNSS) antenna sharing receiver (GNSSASR) for sharing a GNSS antenna with one or more secondary GNSS receivers is provided. The GNSSASR includes an input radio frequency (RF) port for receiving a GNSS signal from the GNSS antenna, one or more output RF ports for transmitting the GNSS signal to the secondary GNSS receivers, a coupler for reducing attenuation in the GNSS signal transmitted to the secondary GNSS receivers, a power supply circuit for supplying a direct current (DC) voltage with reduced loss to the GNSS antenna based on availability of a secondary GNSS receiver, and a current monitoring circuit for monitoring DC flow to the GNSS antenna from the power supply circuit, limiting an increase in the DC flow due to a fault in the GNSS antenna, and indicating a fault in the GNSS antenna to the GNSSASR and the secondary GNSS receivers.
    Type: Grant
    Filed: May 23, 2017
    Date of Patent: July 28, 2020
    Assignee: Accord Ideation Private Limited
    Inventors: Shamanth Shetty, Rakesh Ammunje Nayak, Mahesh Kumar KV, Raghavendra Manur Shenoy
  • Patent number: 10718870
    Abstract: Determination of one or more timing (phase) and/or frequency corrections to be made to a local time base of a receiver device to synchronize the local time base with the time of GPS or other highly accurate time base. Timing packets from one or more grandmaster devices whose time bases are substantially the same as that of GPS or the like and/or positioning system signals (e.g., GPS signals) directly from a positioning system are received and manipulated to determine the timing and/or frequency corrections. The corrected time base may be used to assist in acquiring such positioning signals to allow for higher accuracy correction and/or for downstream communication operation. The present utilities are advantageous such as when a sufficient number of channels (e.g., four) from the receiver device to positioning system satellites are unavailable to synchronize the local time base to the GPS or other accurate time base.
    Type: Grant
    Filed: May 11, 2018
    Date of Patent: July 21, 2020
    Assignee: iPosi, Inc.
    Inventors: Eric Derbez, Christopher Neil Kurby, Derek Glass
  • Patent number: 10718848
    Abstract: A direction finding system is provided. It serves the purpose of finding a direction of an electromagnetic signal. The direction finding system comprises an antenna system for receiving the electromagnetic signal and a direction finder for determining the direction of the electromagnetic signal. The direction finder comprises a direction determiner, adapted to determine a number of possible directions, and a direction evaluator, adapted to evaluate the possible directions and determine the direction of the electromagnetic signal therefrom.
    Type: Grant
    Filed: April 10, 2017
    Date of Patent: July 21, 2020
    Assignee: ROHDE & SCHWARZ GMBH & CO. KG
    Inventor: Philipp Schellens