Patents Examined by Clarissa Cuevas
  • Patent number: 11950902
    Abstract: The present invention provides a micro biosensor for reducing a measurement interference when measuring a target analyte in the biofluid, including: a substrate; a first working electrode configured on the surface, and including a first sensing section; a second working electrode configured on the surface, and including a second sensing section which is configured adjacent to at least one side of the first sensing section; and a chemical reagent covered on at least a portion of the first sensing section for reacting with the target analyte to produce a resultant. When the first working electrode is driven by a first working voltage, the first sensing section measures a physiological signal with respect to the target analyte. When the second working electrode is driven by a second working voltage, the second conductive material can directly consume the interferant so as to continuously reduce the measurement inference of the physiological signal.
    Type: Grant
    Filed: July 31, 2020
    Date of Patent: April 9, 2024
    Assignee: Bionime Corporation
    Inventors: Chun-Mu Huang, Chieh-Hsing Chen, Heng-Chia Chang, Chi-Hao Chen, Pi-Hsuan Chen
  • Patent number: 11944784
    Abstract: Disclosed herein are combined devices and methods of manufacturing such combined devices. The combined devices disclosed herein include an analyte sensor including a sensor probe; an infusion set hub including a cannula; and a flexible base. The analyte sensor and infusion set hub are attached to the flexible base such that movement of one of the analyte sensor and the infusion set hub is substantially not transferred to the other one of the analyte sensor and the infusion set hub.
    Type: Grant
    Filed: November 18, 2019
    Date of Patent: April 2, 2024
    Assignee: Medtronic Minimed, Inc.
    Inventors: Guangping Zhang, Kiem H. Dang, Valerie Chen, Ling Jiang, Evan Anselmo, Zhiwu Fang, Sarnath Chattaraj
  • Patent number: 11872033
    Abstract: Systems, methods and graphical user interfaces for visualizing analyte measurements using animation are presented. For instance, a system for continuously monitoring analyte concentration in a physiological fluid includes a sensor, a transmitter, at least one processor and a display. The display is for outputting a graphical user interface. The display is controlled by the at least one processor to display, using the graphical user interface, historical analyte concentration levels and a trend indication animation. The trend indication animation comprises at least one visual element configured by the at least one processor to have a periodic motion between a first position and a second position on the display in one of a plurality of trend directions. The trend direction of the periodic motion between the first and second positions indicates whether the analyte concentration is increasing or decreasing and the rate of change of the analyte concentration level.
    Type: Grant
    Filed: November 12, 2020
    Date of Patent: January 16, 2024
    Assignee: Lifescan iP Holdings, LLC
    Inventors: Lisa Troncelliti, Mark Hofmeister, Allison Gonzales, David Shearer, Brian Levy, Bovornrat K. Cochard
  • Patent number: 11850019
    Abstract: An analyte monitoring system may include an analyte sensor, two or more devices including a display device and a second device, and a transceiver. The transceiver may be configured to (i) receive measurement information from the analyte sensor, (ii) establish a connection with the display device while being connected with no other device of the two or more devices, (iii) convey first information to the display device while connected with the display device, (iv) establish a connection with the second device while being connected with no other device of the two or more devices, and (v) convey or receive second information to or from the second device while connected with the second device. The display device may be configured to (i) receive the first information from the transceiver and (ii) display an analyte level based on at least the first information.
    Type: Grant
    Filed: September 11, 2019
    Date of Patent: December 26, 2023
    Assignee: Senseonics, Incorporated
    Inventors: Abhi Chavan, Barkha Raisoni, Robert Matikyan
  • Patent number: 11844593
    Abstract: The present disclosure pertains to a method and system for determining the blood pressure dip of a subject based on features extracted from information generated by an on-body sensor system. The on-body sensor system includes a photoplethysmographic (PPG) sensor and a motion sensor. Blood pressure variation is captured throughout the day and utilized along with determinations of whether a subject is asleep or awake. The blood pressure determinations collected throughout the day, along with determinations of sleep periods, are used to determine a blood pressure dip for the day the on-body sensor system is worn.
    Type: Grant
    Filed: March 29, 2019
    Date of Patent: December 19, 2023
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Koen Theo Johan De Groot, Mustafa Ghassan Radha
  • Patent number: 11826011
    Abstract: A device and a signal processing method that can monitor human memory performance by recognizing and characterizing high-gamma (65-250 Hz) and beta (14-30 Hz) band oscillations in the left Brodmann Area 40 (BA40) of the brain that correspond with the strength of memory encoding or correct recall. The signal processing method detects high-gamma and beta band oscillations in the electrical signals recorded from left BA40, and quantifies the spectral content, power, duration, onset, and offset of the oscillations. The oscillation's properties are used to classify the subject's memory performance on the basis of a comparison with the subject's prior human memory performance and the properties of the corresponding oscillations. A report of the subject's current memory performance can be utilized in a closed loop brain stimulation device that serves the purpose of enhancing human memory performance.
    Type: Grant
    Filed: June 13, 2018
    Date of Patent: November 28, 2023
    Assignee: THOMAS JEFFERSON UNIVERSITY
    Inventors: Shennan Aibel Weiss, Zachary Waldman, Michael Sperling
  • Patent number: 11786151
    Abstract: An apparatus for obtaining a target signal spectrum includes: a spectrum measurer configured to measure a plurality of spectra from an object; and a processor configured to obtain a difference spectrum matrix by subtracting a reference spectrum from each of the plurality of spectra, and to obtain a spectrum of a target signal based on the obtained difference spectrum matrix.
    Type: Grant
    Filed: December 11, 2020
    Date of Patent: October 17, 2023
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Ka Ram Choi, So Young Lee, Jun Ho Lee, Sang Kyu Kim, Hyeong Seok Jang
  • Patent number: 11759120
    Abstract: The present disclosure concerns a plethysmograph. The plethysmograph comprises a housing defining a test cavity configured to enclose a test subject. The plethysmograph further comprises an optical filter providing a spectrally restricted optical access to the test cavity from an exterior of the housing, the optical filter being configured to at least partially transmit light in a transmission band ranging from about 560 nm to about 750 nm; and to at least partially block light in a blocking band ranging from about 380 nm to about 560 nm.
    Type: Grant
    Filed: October 3, 2019
    Date of Patent: September 19, 2023
    Assignee: SCIREQ SCIENTIFIC RESPIRATORY EQUIPMENT INC.
    Inventors: Simon Altmejd, Annette Robichaud, Ilan Benjamin Urovitch, Camilo Guevara Garzon
  • Patent number: 11723561
    Abstract: There is provided a system for measuring a property of a sample that comprises a test strip for collecting the sample; a diagnostic measuring device configured to receive the test strip and measure a concentration of an analyte in the sample received on the test strip; and the diagnostic measuring device further comprising a processor programmed to execute an analyte correction for correcting a measurement of the sample due to one or more interferents, comprising: calculating an interferent impedance measurement including a magnitude measurement and a phase measurement using a switched capacitor accumulator to measure a phase angle; and adjusting the measurement of the analyte in the sample using that the calculated interferent impedance measurement.
    Type: Grant
    Filed: February 11, 2020
    Date of Patent: August 15, 2023
    Assignee: Trividia Health, Inc.
    Inventor: Steven V. Leone
  • Patent number: 11607147
    Abstract: A component analyzing apparatus is provided. The component analyzing apparatus includes: an impedance measurer including: a plurality of electrodes having an electrode width that is determined based on an effective measurement depth for analyzing a component of an analyte and a gap between two electrodes among the plurality of electrodes, and an electrode controller configured to apply a first current to a first electrode and a second electrode among the plurality of electrodes and configured to measure impedance based on a voltage between a third electrode and a fourth electrode; and a processor configured to analyze the component of the analyte based on the impedance measured by the electrode controller.
    Type: Grant
    Filed: May 19, 2020
    Date of Patent: March 21, 2023
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Kun Sun Eom, Sung Hyun Nam, Moon Seong Park, Yun S Park, Myoung Hoon Jung
  • Patent number: 11534070
    Abstract: A blood pressure measurement device measures a blood pressure of a subject by a blood pressure measurement unit, detects a body sound of the subject during blood pressure measurement by a sound detection unit. The measured blood pressure and the detected body sound are recorded in association with each other by time information. The factor for the increase of measured blood pressure value can be specified by showing the chronological blood pressure measurement result along with checking the presence or absence of a body sound such as snoring etc.
    Type: Grant
    Filed: August 20, 2019
    Date of Patent: December 27, 2022
    Assignees: OMRON CORPORATION, OMRON HEALTHCARE CO., LTD.
    Inventors: Masakazu Tsutsumi, Shingo Yamashita
  • Patent number: 11439328
    Abstract: An optical sensor according to an example embodiment includes: a light source part configured to emit light onto an object; a signal separator configured to separate optical signals, returning from the object, into a fluorescence signal and a non-fluorescence signal; a first photodetector part configured to detect the non-fluorescence signal; and a second photodetector part configured to detect the fluorescence signal.
    Type: Grant
    Filed: January 13, 2020
    Date of Patent: September 13, 2022
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventor: Moonseong Park