Patents Examined by Cole Leon Lindsey
  • Patent number: 11978640
    Abstract: In a method of forming a pattern over a semiconductor substrate, a target layer to be patterned is formed over a substrate, a mask pattern including an opening is formed in a mask layer, a shifting film is formed in an inner sidewall of the opening, a one-directional etching operation is performed to remove a part of the shifting film and a part of the mask layer to form a shifted opening, and the target layer is patterned by using the mask layer with the shifted opening as an etching mask. A location of the shifted opening is laterally shifted from an original location of the opening.
    Type: Grant
    Filed: April 9, 2021
    Date of Patent: May 7, 2024
    Inventors: Yi-Chen Lo, Yi-Shan Chen, Chih-Kai Yang, Pinyen Lin
  • Patent number: 11950416
    Abstract: Some embodiments include an integrated assembly having a first memory region, a second memory region offset from the first memory region, and an intermediate region between the first and second memory regions. Channel-material-pillars are arranged within the memory regions. Conductive posts are arranged within the intermediate region. A panel extends across the memory regions and the intermediate region. The panel is laterally between a first memory-block-region and a second memory-block-region. Doped-semiconductor-material is within the memory regions and the intermediate region, and is directly adjacent to the panel. The doped-semiconductor-material is at least part of conductive source structures within the memory regions. Insulative rings laterally surround lower regions of the conductive posts and are between the conductive posts and the doped-semiconductor-material. Insulative liners are along upper regions of the conductive posts. Some embodiments include methods of forming integrated assemblies.
    Type: Grant
    Filed: February 1, 2021
    Date of Patent: April 2, 2024
    Assignee: Micron Technology, Inc.
    Inventors: Alyssa N. Scarbrough, John D. Hopkins, Jordan D. Greenlee
  • Patent number: 11950415
    Abstract: Some embodiments include an integrated assembly having a memory region and another region adjacent the memory region. Channel-material-pillars are arranged within the memory region, and conductive posts are arranged within said other region. A source structure is coupled to lower regions of the channel-material-pillars. A panel extends across the memory region and the other region. Doped-semiconductor-material is directly adjacent to the panel within the memory region and the other region. The doped-semiconductor-material is at least part of the source structure within the memory region. Liners are directly adjacent to the conductive posts and laterally surround the conductive posts. The liners are between the conductive posts and the doped-semiconductor-material. Some embodiments include methods of forming integrated assemblies.
    Type: Grant
    Filed: January 29, 2021
    Date of Patent: April 2, 2024
    Assignee: Micron Technology, Inc.
    Inventors: Alyssa N. Scarbrough, Jordan D. Greenlee, John D. Hopkins
  • Patent number: 11942374
    Abstract: A semiconductor structure may include a first nanosheet field-effect transistor formed on a first portion of a substrate, a second nanosheet field-effect transistor formed on a second portion of the substrate, and one or more metal contacts. The first field-effect transistor formed on the first portion of a substrate may include a first source drain epitaxy. A top surface of the first source drain epitaxy may be above a top surface of a top-most nanosheet channel layer. The second nanosheet field-effect transistor formed on the second portion of the substrate may include a second source drain epitaxy and a third source drain epitaxy. The second source drain epitaxy may be below the third source drain epitaxy. The third source drain epitaxy may be u-shaped and may be connected to at least one nanosheet channel layer.
    Type: Grant
    Filed: June 17, 2021
    Date of Patent: March 26, 2024
    Assignee: International Business Machines Corporation
    Inventors: Ruilong Xie, Julien Frougier, Chanro Park, Kangguo Cheng
  • Patent number: 11937426
    Abstract: The present disclosure provides a semiconductor structure and a method for forming a semiconductor structure. The semiconductor structure includes a substrate, and a dielectric stack over the substrate. The dielectric stack includes a first layer over the substrate and a second layer over the first layer. The semiconductor structure further includes a gate layer including a first portion traversing the second layer and a second portion extending between the first layer and the second layer.
    Type: Grant
    Filed: May 3, 2021
    Date of Patent: March 19, 2024
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Feng-Ching Chu, Feng-Cheng Yang, Katherine H. Chiang, Chung-Te Lin, Chieh-Fang Chen
  • Patent number: 11923385
    Abstract: A solid-state imaging device including: a semiconductor substrate having a first surface and a second surface opposed to each other, and including a photoelectric converter provided for each of pixel regions; an impurity diffusion region provided, for each of the pixel regions, in proximity to the first surface of the semiconductor substrate; and a contact electrode embedded in the semiconductor substrate from the first surface, and provided over and in contact with the impurity diffusion regions each provided for each of the pixel regions adjacent to each other.
    Type: Grant
    Filed: April 8, 2019
    Date of Patent: March 5, 2024
    Assignee: SONY SEMICONDUCTOR SOLUTIONS CORPORATION
    Inventor: Hironobu Fukui
  • Patent number: 11895927
    Abstract: A semiconductor memory device includes a substrate having a conductor region thereon, an interlayer dielectric layer on the substrate, and a conductive via electrically connected to the conductor region. The conductive via has a lower portion embedded in the interlayer dielectric layer and an upper portion protruding from a top surface of the interlayer dielectric layer. The upper portion has a rounded top surface. A storage structure conformally covers the rounded top surface.
    Type: Grant
    Filed: May 13, 2021
    Date of Patent: February 6, 2024
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Chia-Chang Hsu, Tang-Chun Weng, Cheng-Yi Lin, Yung-Shen Chen, Chia-Hung Lin
  • Patent number: 11888031
    Abstract: In a disclosed semiconductor structure, a lateral bipolar junction transistor (BJT) has a base positioned laterally between a collector and an emitter. The base includes a semiconductor fin with a first portion that extends from a substrate through an isolation layer, a second portion on the first portion, and a third portion on the second portion. The collector and emitter are on the isolation layer and positioned laterally immediately adjacent to opposing sidewalls of the second portion of the semiconductor fin. In some embodiments, the BJT is a standard BJT where the semiconductor fin (i.e., the base), the collector, and the emitter are made of the same semiconductor material. In other embodiments, the BJT is a heterojunction bipolar transistor (HBT) where a section of the semiconductor fin (i.e., the base) is made of a different semiconductor material for improved performance. Also disclosed is a method of forming the structure.
    Type: Grant
    Filed: November 30, 2021
    Date of Patent: January 30, 2024
    Assignee: GlobalFoundries U.S. Inc.
    Inventors: Hong Yu, Judson R. Holt, Zhenyu Hu
  • Patent number: 11862722
    Abstract: Semiconductor device structures and methods for manufacturing the same are provided. The semiconductor device structure includes a substrate, a first nitride semiconductor layer, a second nitride semiconductor layer, a barrier layer, a third nitride semiconductor layer and a gate structure. The first nitride semiconductor layer is disposed on the substrate. The second nitride semiconductor layer is disposed on the first nitride semiconductor layer and has a bandgap greater than that of the first nitride semiconductor layer. The barrier layer is disposed on the second nitride semiconductor layer and has a bandgap greater than that of the second nitride semiconductor layer. The third nitride semiconductor layer is doped with impurity and disposed on the barrier layer. The gate structure is disposed on the third nitride semiconductor layer.
    Type: Grant
    Filed: September 9, 2020
    Date of Patent: January 2, 2024
    Assignee: INNOSCIENCE (SUZHOU) TECHNOLOGY CO., LTD.
    Inventors: Chao Yang, Chunhua Zhou, Qiyue Zhao
  • Patent number: 11837612
    Abstract: An image sensor includes: a substrate including a first surface and a second surface on which light is incident, the second surface being opposite to the first surface; a photoelectric converter provided in the substrate; a first metal layer provided on the first surface of the substrate; a second metal layer provided on the first metal layer; and a capacitor layer provided between the first metal layer and the second metal layer, wherein the capacitor layer includes: a first lower electrode electrically connected to the first metal layer, a first upper electrode electrically connected to the second metal layer, a second upper electrode spaced apart from the first upper electrode and electrically connected to the second metal layer, a first capacitor provided between the first lower electrode and the first upper electrode, and a second capacitor provided between the first lower electrode and the second upper electrode.
    Type: Grant
    Filed: April 23, 2021
    Date of Patent: December 5, 2023
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Min-Jun Choi, In Gyu Baek, Bom I Sim, Jin Yong Choi
  • Patent number: 11810702
    Abstract: The disclosed technology relates generally to the field of magnetic devices, in particular to magnetic memory devices or logic devices. The disclosed technology presents a magnetic structure for a magnetic device, wherein the magnetic structure comprises a magnetic reference layer (RL); a spacer provided on the magnetic RL, the spacer comprising a first texture breaking layer provided on the magnetic RL, a magnetic bridge layer provided on the first texture breaking layer, and a second texture breaking layer provided on the magnetic bridge layer. Further, the magnetic structure comprising a magnetic pinned layer (PL) or hard layer (HL) provided on the spacer, wherein the magnetic RL and the magnetic PL or HL are magnetically coupled across the spacer through direct exchange interaction.
    Type: Grant
    Filed: December 8, 2020
    Date of Patent: November 7, 2023
    Assignee: IMEC vzw
    Inventors: Robert Carpenter, Johan Swerts
  • Patent number: 11791387
    Abstract: A semiconductor structure and a method of forming the same are provided. In an embodiment, an exemplary semiconductor structure includes a gate structure disposed over a channel region of an active region, a drain feature disposed over a drain region of the active region; a source feature disposed over a source region of the active region, a backside source contact disposed under the source feature, an isolation feature disposed on and in contact with the source feature, a drain contact disposed over and electrically coupled to the drain feature, and a gate contact via disposed over and electrically coupled to the gate structure. A distance between the gate contact via and the drain contact is greater than a distance between the gate contact via and the isolation feature. The exemplary semiconductor structure would have a reduced parasitic capacitance and an enlarged leakage window.
    Type: Grant
    Filed: April 30, 2021
    Date of Patent: October 17, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Po-Yu Huang, Chen-Ming Lee, I-Wen Wu, Fu-Kai Yang, Mei-Yun Wang
  • Patent number: 11785767
    Abstract: A semiconductor device includes a substrate having a first region and a second region, insulating patterns in the substrate in the second region that define active patterns of the substrate, gate electrodes spaced apart from each other and stacked on an upper surface of the substrate and extending in a first direction, first separation regions extending in the first direction and in contact with the active patterns, second separation regions extending between the first separation regions in the first direction, and channel structures penetrating through the gate electrodes in the first region. At least one of the second separation regions is in contact with the substrate below the insulating patterns.
    Type: Grant
    Filed: January 27, 2021
    Date of Patent: October 10, 2023
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Youngwoo Kim, Dawoon Jeong, Tak Lee, Jungmin Lee