Patents Examined by Colin W Slifka
  • Patent number: 10954136
    Abstract: A preparation method of a tetragonal NaV2O5.H2O nanosheet-like powder includes steps of: (S1) simultaneously adding NaVO3 and Na2S.9H2O into deionized water, and then magnetically stirring, and obtaining a black turbid solution; (S2) sealing after putting the black turbid solution into an inner lining of a reaction kettle, fixing the sealed inner lining in an outer lining of the reaction kettle, placing the reaction kettle into a homogeneous reactor, and then performing a hydrothermal reaction; and (S3) after completing the hydrothermal reaction, naturally cooling the reaction kettle to the room temperature, and then alternately cleaning through water and alcohol, and then collecting a product, drying the product, and finally obtaining the tetragonal NaV2O5.H2O nanosheet-like powder with a thickness in a range of 30-60 nm and a single crystal structure grown along a (002) crystal orientation.
    Type: Grant
    Filed: November 27, 2018
    Date of Patent: March 23, 2021
    Assignee: Shaanxi University of Science and Technology
    Inventors: Jianfeng Huang, Wenbin Li, Liyun Cao, Liangliang Feng, Shuwei He, Yijie Ren, Ruizi Li, Xunwei Chang
  • Patent number: 10946364
    Abstract: Provided is a catalyst system for oxidative dehydrogenation, a reactor for oxidative dehydrogenation including the catalyst system, and a method of performing oxidative dehydrogenation using the reactor. In the catalyst system, a fixed-bed reactor is filled with a catalyst for oxidative dehydrogenation in an n-stage structure (n being an integer of 2 or more), wherein each stage of the n-stage structure satisfies Equations 1 and 2 as claimed so that the concentration of an active ingredient included in the catalyst gradually increases in the direction in which reactants are fed into the reactor. Heat generated inside the reactor may be effectively controlled during oxidative dehydrogenation, thereby improving conversion rate, selectivity, and yield. In addition, catalyst deterioration may be reduced, thereby improving long-term stability of the catalyst.
    Type: Grant
    Filed: April 12, 2018
    Date of Patent: March 16, 2021
    Assignee: LG CHEM, LTD.
    Inventors: Myungji Suh, Dong Hyun Ko, Jun Han Kang, Hyunseok Nam, Sang Jin Han, Seongmin Kim
  • Patent number: 10947426
    Abstract: Disclosed is an aqueous bonding composition comprises: (A) a saccharide; (B) an inorganic acid ammonium salt; and (C) a metal salt, wherein the metal salt (C) comprises at least one selected from potassium salts, calcium salts, sodium salts, and magnesium salts. The aqueous bonding composition is excellent in balance among bending strength, bending strength under wet condition, water-absorption thickness expansion coefficient, and peeling strength. The aqueous bonding composition can be usefully used to produce a wood-based material. Further, a wood-based material obtainable by using the aqueous bonding composition is provided.
    Type: Grant
    Filed: January 30, 2018
    Date of Patent: March 16, 2021
    Assignee: HENKEL AG & CO. KGAA
    Inventors: Atsushi Kakuda, Yoshio Yoshida
  • Patent number: 10946366
    Abstract: The present invention addresses the problem and purpose of providing a honeycomb structure that has a sufficiently high strength and is excellent in endurance, and a catalyst for cleaning an exhaust gas using the same that is excellent in resistance to sulfur oxide (SOX). The honeycomb structure of the present invention is one consists of a flat inorganic fiber sheet comprising an inorganic fiber sheet having supported thereon an inorganic binder and zeolite, and a corrugated inorganic fiber sheet comprising an inorganic fiber sheet having supported thereon the same inorganic binder and zeolite, which are alternately combined with each other, wherein it is characterized in that the zeolite has a particle diameter (i.e., a median particle diameter, D50) of from 0.5 to 10.0 ?m.
    Type: Grant
    Filed: August 3, 2018
    Date of Patent: March 16, 2021
    Assignee: Hitachi Zosen Corporation
    Inventors: Susumu Hikazudani, Emi Shono, Kana Shimizu
  • Patent number: 10940467
    Abstract: The present invention provides an improved method for making molecular sieves having MWW framework structure using precipitated aluminosilicates (PAS), and the use of molecular sieves so made in processes for catalytic conversion of hydrocarbon compounds.
    Type: Grant
    Filed: January 18, 2019
    Date of Patent: March 9, 2021
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Ivy D. Johnson, Nadya A. Hrycenko
  • Patent number: 10941088
    Abstract: A method of autothermal oxidative coupling of methane (OCM) utilizes introducing a methane-containing feedstock and an oxygen-gas-containing feedstock into a reactor (10) as a flowing mixture (18) with a space time of 500 ms or less. The reactor (10) contains a catalyst bed (20) of an OCM catalyst that contacts the flowing mixture and wherein the catalyst bed (20) has a heat Peclet number (Peh) of from 5 or less, a mass Peclet number (Pem) of from 5 or more, and a transverse Peclet number (P) of from 1 or less while contacting the flowing mixture. The methane and oxygen of the feedstocks are allowed to react within the reactor (10) to form methane oxidative coupling reaction products. A reactor (10) for carrying out the OCM reaction is also disclosed.
    Type: Grant
    Filed: May 2, 2019
    Date of Patent: March 9, 2021
    Assignee: SABIC Global Technologies B.V.
    Inventors: Sagar Sarsani, David West, Vemuri Balakotaiah, Tian Gu
  • Patent number: 10941039
    Abstract: Dihydrogen metaphosphate can be synthesized via protonation, and can react with a dehydrating agent to afford tetrametaphosphate anhydride. A monohydrogen tetrametaphosphate organic ester can be derived from the anhydride. A metal tetrametaphosphate complex can be prepared using a metal salt and a dihydrogen tetrametaphosphate.
    Type: Grant
    Filed: July 1, 2018
    Date of Patent: March 9, 2021
    Assignee: MASSACHUSETTS INSTITUTE OF TECHNOLOGY
    Inventors: Yanfeng Jiang, Khetpakorn Chakarawet, Julia Stauber, Christopher Colin Cummins
  • Patent number: 10940534
    Abstract: A metal paste formed by kneading a solid content including silver particles and a solvent, in which the solid content includes silver particles containing silver particles having a particle size of 100 to 200 nm by 30% or more based on the number of particles, the silver particles have an average particle size of 60 to 800 nm as a whole, the silver particles constituting the solid content are bound with an amine compound having 4 to 8 carbon atoms in total as a protective agent, and the metal paste contains as an additive a high-molecular-weight ethyl cellulose having a number average molecular weight of 40000 to 90000. Since the metal paste contains a high-molecular-weight ethyl cellulose, a sintered body having a low resistance can be maintained while printability is improved. The metal paste has favorable printability, and can form a sintered body having a low resistance even in a low temperature region of 150° C. or lower.
    Type: Grant
    Filed: August 23, 2016
    Date of Patent: March 9, 2021
    Assignee: TANAKA KIKINZOKU KOGYO K.K.
    Inventors: Teruhisa Iwai, Yuichi Makita, Hidekazu Matsuda, Hitoshi Kubo
  • Patent number: 10933407
    Abstract: A highly active quaternary mixed transition metal oxide material has been developed. The material may be sulfided to generate metal sulfides which are used as a catalyst in a conversion process such as hydroprocessing. The hydroprocessing may include hydrodenitrification, hydrodesulfurization, hydrodemetallation, hydrodesilication, hydrodearomatization, hydroisomerization, hydrotreating, hydrofining, and hydrocracking.
    Type: Grant
    Filed: May 22, 2019
    Date of Patent: March 2, 2021
    Assignee: UOP LLC
    Inventors: Zara Osman, Wei Pan
  • Patent number: 10934456
    Abstract: A method of forming an asphalt mixture can include mixing a bio-source material and a bitumen source to form a bitumen mixture. The bitumen mixture can be mixed with a catalyst to form the asphalt mixture. Particles can be added to the asphalt mixture to form a roofing-grade asphalt mixture. In an embodiment, the bitumen source material can have a softening point of at least approximately 93° C. and a penetration distance no greater than approximately 25 dmm. In another embodiment, the roofing-grade asphalt mixture can have a softening point of at least approximately 104° C., a penetration distance no greater than approximately 12 dmm, a viscosity of at least approximately 3000 cps at a temperature of 204° C., or any combination thereof. The asphalt mixture can be applied to a base material to form a roofing product. The asphalt mixture can be applied as a pavement product.
    Type: Grant
    Filed: November 30, 2016
    Date of Patent: March 2, 2021
    Assignee: CERTAINTEED CORPORATION
    Inventors: Husnu M. Kalkanoglu, Keith Hong, Gregory F. Jacobs
  • Patent number: 10920390
    Abstract: A method for an ex-situ carbonization and solidification of silt soil using an active magnesium oxide, pertaining to the field of civil and hydraulic engineering. The method includes the steps of silt pretreatment, homomixing of solidifying agents, silt granulation, carbonization by carbon dioxide, exhaust gas/waste liquid collection, and resource utilization. In the method, the supply amount of the solidifying agent is adjusted through the actual measurement of the moisture content, and the granule size and carbon dioxide pressure are adjusted according to the soil properties. Therefore, a full mixing of the silt with the solidifying agents and a rapid carbonization of the magnesium oxide solidified silt granules can be achieved. Moreover, the dust and carbon dioxide can be absorbed during the operation, thereby avoiding secondary pollution. The silt carbonized granules can be used as filling materials for roadbeds, airport runways, engineering backfills, etc.
    Type: Grant
    Filed: December 26, 2017
    Date of Patent: February 16, 2021
    Assignee: SOUTHEAST UNIVERSITY
    Inventors: Songyu Liu, Guanghua Cai, Liang Wang, Chuan Qin
  • Patent number: 10919029
    Abstract: The invention concerns a catalyst comprising at least one zeolite with structure type MTW, a matrix, at least one metal from group VIII of the periodic classification of the elements, said catalyst having a mesopore volume increased by at least 10% compared with its initial mesopore volume, which is generally in the range 0.55 to 0.75 mL/g, at the end of a treatment with steam at a partial pressure in the range 0.01 to 0.07 MPa and at a temperature in the range 300° C. to 400° C. for at least 0.5 hour. The invention concerns the process for the preparation of said catalyst as well as an isomerization process employing said catalyst.
    Type: Grant
    Filed: December 1, 2017
    Date of Patent: February 16, 2021
    Assignee: IFP Energies Nouvelles
    Inventors: Emmanuelle Guillon, Laure Brandhorst
  • Patent number: 10913052
    Abstract: The purpose of the invention is to provide a supported bimetallic core-shell structure catalyst and its preparation method. Supporter, metal salt and reducing agent solution are mixed to synthesize the catalyst M@PdM/ZT by using a one-step synthesis method, wherein the active metal particle M@PdM as core-shell structure, M Is the core representing one of the Ag, Pt, Au and Ir. ZT is the supporter, representing one of hydrotalcite (Mg2Al-LDH), alumina (Al2O3) and silica (SiO2). By changing the temperature and the reaction time to control the kinetic behavior of the reduction of two kinds of metal ions to realize the construction of core-shell structure. Active metal particle composition and shell thickness are regulated by controlling metal ion concentration. The bimetallic core-shell catalyst prepared by this method showed excellent selectivity and stability in acetylene selective hydrogenation and anthraquinone hydrogenation.
    Type: Grant
    Filed: November 2, 2018
    Date of Patent: February 9, 2021
    Assignee: BEIJING UNIVERSITY OF CHEMICAL TECHNOLOGY
    Inventors: Dianqing Li, Rui Ma, Yufei He, Yongjun Feng, Junting Feng
  • Patent number: 10913826
    Abstract: This invention relates to colloidally-protected, wax-based microstructures and dispersions thereof. More specifically, this invention relates to powders prepared from colloidally-protected, wax-based microstructure dispersions and process of making such powders. This invention also relates to a various end-use compositions comprising such powders from wax-based colloidal dispersions.
    Type: Grant
    Filed: September 24, 2015
    Date of Patent: February 9, 2021
    Assignee: Henry Company, LLC
    Inventor: Amba Ayambem
  • Patent number: 10900105
    Abstract: A rolled steel sheet is provided. The rolled steel sheet has a mechanical strength greater than or equal to 600 MPa and an elongation at fracture that is greater than or equal to 20%. A a method for its fabrication is also provided. The chemical composition of the steel sheet includes 0.10?C?0.30%, 6.0?Mn?15.0%, 6.0?Al?15.0%, and optionally one or more elements selected from among: Si?2.0%, Ti?0.2%, V?0.6% and Nb?0.3%. The remainder of the composition includes iron and the unavoidable impurities resulting from processing. The ratio of the weight of manganese to the weight of aluminum is such that Mn Al > 1.0 . The microstructure of the sheet includes ferrite, austenite and up to 5% Kappa precipitates in area fraction.
    Type: Grant
    Filed: May 27, 2013
    Date of Patent: January 26, 2021
    Assignee: ArcelorMittal
    Inventors: Astrid Perlade, Ian Alberto Zuazo Rodriguez, Xavier Garat
  • Patent number: 10899915
    Abstract: Disclosed is a wax-based thermoplastic organic binder composition consisting of: 50 to 94 wt % of a wax mixture comprising paraffin wax and microcrystalline wax; 3 to 35 wt % of a polyolefin copolymer having a carbonyl group as a backbone polymer; and 3 to 15 wt % of a process control agent.
    Type: Grant
    Filed: November 7, 2016
    Date of Patent: January 26, 2021
    Assignee: Research Cooperation Foundation of Yeungnam University
    Inventor: Kwan Hee Han
  • Patent number: 10894888
    Abstract: The invention provides a dust repellant and anti-reflective inorganic coating and the method for preparing the coating. The dust repellant and anti-reflective inorganic coating includes nano-porous silica (SiO2) network of about 5 nm to about 35 nm and is characterized by cracks. The method of preparing the dust repellant and anti-reflective inorganic coating on a substrate includes mixing of aqueous SiO2 solution with a solvent. The aqueous SiO2 solution with the solvent is stirred to form a solution. The solution is coated on the substrate to form a film on the surface of the substrate. Thereafter, the film is annealed by heating the film to a temperature of about 500° C. to about 700° C. within a period of about 2 minutes to about 2 hours. Finally, the film is allowed to cool down.
    Type: Grant
    Filed: December 1, 2015
    Date of Patent: January 19, 2021
    Assignees: KING ABDULAZIZ CITY FOR SCIENCE AND TECHNOLOGY, FRAUNHOFER INSTITUTE FOR SILICATE RESEARCH ISC
    Inventors: Mohammed Abdullah Bahattab, Walther Glaubitt, Mark Mirza, Mohammed I Alhussani
  • Patent number: 10894747
    Abstract: Adhesive compositions and methods for bonding materials with different thermal expansion coefficients is provided. The adhesive is formulated using a flux material, a low flux material, and a filler material, where the filler material comprises particulate from at least one of the two components being bonded together. A thickening agent can also be used as part of the adhesive composition to aid in applying the adhesive and establishing a desired bond thickness. The method of forming a high strength bond using the disclosed adhesive does not require the use of intermediary layer or the use of high cure temperatures that could damage one or both of the components being bonded together.
    Type: Grant
    Filed: May 21, 2018
    Date of Patent: January 19, 2021
    Assignee: The Boeing Company
    Inventors: Tab Hunter Crooks, MaryAnn S. Muench
  • Patent number: 10888852
    Abstract: Provided is a process for manufacturing a Fluid Catalytic Cracking catalyst additive composition with a novel binder. The steps involve mixing an alumina source with water to make a slurry; adding to the alumina slurry an amount of P2O5 source; the slurry is then stirred and reacted under controlled temperature and time conditions to form an aluminum phosphate binder; adding to the aluminum phosphate binder a zeolite, an amount of silica binder and an amount of clay; and spray-drying the slurry to form catalyst additive particles. The catalyst additive composition comprises a about 35 wt % to about 65 wt % zeolite; about 0 wt % to about 10 wt % silica; about 15 wt % to about 50 wt % clay and an aluminum phosphate binder comprising about 2.5 wt % to 5 wt % amorphous or pseudo-boehmite alumina and about 7 wt % to 15 wt % phosphoric acid.
    Type: Grant
    Filed: July 22, 2016
    Date of Patent: January 12, 2021
    Assignee: ALBEMARLE CORPORATION
    Inventors: Maria Margaret Ludvig, Sandra Gavalda, Nataly Garcia Vargas, Petrus Martinus Overwater, Kevin Alfonso Miller, Edward Lee Foster
  • Patent number: 10888844
    Abstract: Provided is a catalyst for oxidative dehydrogenation, a method of preparing the catalyst, and a method of performing oxidative dehydrogenation using the catalyst. The catalyst for oxidative dehydrogenation has improved durability and fillability by including a porous support coated with a metal oxide (AB2O4) according to Equation 1 of the present invention, wherein the metal oxide exhibits activity during oxidative dehydrogenation. Therefore, when the catalyst is used in oxidative dehydrogenation of butene, the conversion rate of butene and the selectivity and yield of butadiene may be greatly improved.
    Type: Grant
    Filed: April 12, 2018
    Date of Patent: January 12, 2021
    Assignee: LG CHEM, LTD.
    Inventors: Myung Ji Suh, Dong Hyun Ko, Kyong Yong Cha, Dae Heung Choi, Ye Seul Hwang, Jun Kyu Han, Sun Hwan Hwang