Abstract: A method for testing memory cells under test of an integrated circuit includes allocating an access value to a memory access and granting an access credit. If the access value of the memory access does not exceed the access credit, the memory access is performed and the access credit is reduced by the access value. The memory access is performed to one memory cell or at bit level to a plurality of memory cells. A processor is connectable to a memory having a plurality of memory cells. The processor is configured to test memory cells of a protected memory area of the memory by performing memory accesses at bit level, control a counting register in such a way that a value stored in the counting register is modified according to a number of performed memory accesses, and test memory cells of the protected memory area of the memory only if the value stored in the counting register lies within a permissible value range.
Abstract: A ReRAM memory cell includes a ReRAM device including a solid electrolyte layer disposed between a first ion-source electrode and a second electrode and a select circuit including two series-connected select transistors connected in series with the ReRAM device, each of the two series-connected select transistors having a gate connected to a separate control line.
Type:
Grant
Filed:
May 7, 2019
Date of Patent:
February 2, 2021
Assignee:
Microchip Technology Inc.
Inventors:
Victor Nguyen, Fethi Dhaoui, John L. McCollum, Fengliang Xue
Abstract: Circuitry comprises data handling circuitry having a memory, the data handling circuitry being operable in a primary mode in which the data handling circuitry performs a data handling function by accessing the memory and in a secondary mode in which the data handling circuitry performs the data handling function independently of the memory; test circuitry to control a test operation during execution of a set of data processing instructions by a data processor configured to execute data processing instructions by reference to the data handling function performed by the data handling circuitry; in which: the test circuitry is configured to control the data handling circuitry to transition from the primary mode to the secondary mode in response to initiation of a test operation on the memory so that the data processor executes one or more of the set of data processing instructions by reference to the data handling function performed by the data handling circuitry in the secondary mode at least while the test ope
Type:
Grant
Filed:
October 31, 2019
Date of Patent:
January 19, 2021
Assignee:
Arm Limited
Inventors:
Mohammadi Shabbirhussain Bharmal, Kauser Yakub Johar, Francisco João Feliciano Gaspar
Abstract: A non-volatile storage apparatus includes a plurality of non-volatile memory cells and control circuitry. The control circuitry is configured to apply one or more soft erase pulses to the plurality of non-volatile memory cells to reduce threshold voltages of the plurality of non-volatile memory cells from initial levels corresponding to programmed data to intermediate levels below the initial levels and above an erased level. The control circuitry is configured to apply one or more soft programming pulse to increase threshold voltages of the plurality of non-volatile memory cells from the intermediate levels to final levels corresponding to the programmed data.
Type:
Grant
Filed:
June 13, 2019
Date of Patent:
January 12, 2021
Assignee:
Western Digital Technologies, Inc.
Inventors:
Amiya Banerjee, Shreesha Prabhu, Saugata Das Purkayastha
Abstract: A memory device includes a bit line precharge circuit configured to precharge bit lines of a memory array in response to a clock pulse. A controller is configured to output the clock pulse to the bit line precharge circuit, and to output a first word line enable signal to a word line driver. The first word line enable signal is delayed by a first delay time from the clock pulse, and a second word line enable signal is delayed by a second delay time from the clock pulse.
Abstract: A method of operating memory devices disposed in different ranks of a multi-rank memory device and sharing a signal line includes receiving, in all of the memory devices included in the multi-rank memory device, on-die termination (ODT) state information of the signal line. The method further includes storing, in each of the memory devices of the multi-rank memory device, the ODT state information of the signal line in a mode register. The method further includes generating, in each of the memory devices of the multi-rank memory device, a control signal based on the ODT state information of the signal line stored in the mode register. The method further includes changing, in each of the memory devices of the multi-rank memory device, an ODT setting of the signal line in response to the control signal.
Abstract: The various implementations described herein include magnetic memory devices and systems, and methods for propagating defects in the devices and systems. In one aspect, a magnetic memory device comprises a non-magnetic cylindrical core configured to receive a current, a plurality of magnetic layers surrounding the core, and a plurality of non-magnetic layers also surrounding the core. The magnetic layers and the non-magnetic layers are arranged in a stack coaxial with the core. Respective magnetic layers of the plurality of magnetic layers are separated by respective non-magnetic layers of the plurality of non-magnetic layers. The device further comprises an input terminal coupled to a first end of the core and a current source coupled to the input terminal. The current source is configured to supply current imparting a Spin Hall Effect (SHE) around the circumference of the core, and the SHE contributes to a magnetization of the magnetic layers.
Abstract: In some embodiments, memory circuitry comprises a pair of immediately-adjacent memory arrays having space laterally there-between. The memory arrays individually comprise memory cells individually having upper and lower elevationally-extending transistors and a capacitor elevationally there-between. The memory arrays comprise individual rows that (a) have an upper access line above and directly electrically coupled to a lower access line, and (b) are directly electrically coupled to one another across the space. The lower access line in one of the rows extends across the space from one of the memory arrays to the other of the memory arrays. Another of the rows comprises a conductive interconnect extending across a portion of the space. The conductive interconnect includes a horizontally-extending portion within the space that is laterally offset from the another row. Other aspects and implementations are disclosed.
Abstract: A semiconductor memory device including a substrate including a first block and a second block each having a cell array region and a connection region, a stack including insulating layers and gate electrodes and extending from the cell array region to the connection region, first cell channel structures in the cell array region of the first block and passing through the stack to be electrically connected to the substrate, first dummy channel structures in the connection region of the first block and passing through the stack, second cell channel structures in the cell array region of the second block and passing through the stack, and second dummy channel structures in the connection region of the second block and passing through the stack may be provided. The first dummy channel structures are electrically insulated from the substrate, while the second dummy channel structures are electrically connected to the substrate.
Type:
Grant
Filed:
December 18, 2019
Date of Patent:
December 1, 2020
Assignee:
Samsung Electronics Co., Ltd.
Inventors:
Jong Won Kim, Kwang Young Jung, Dong Seog Eun
Abstract: An object is to shorten the time for rewriting data in memory cells. A memory module includes a first memory cell, a second memory cell, a selection transistor, and a wiring WBL1. The first memory cell includes a first memory node. The second memory cell includes a second memory node. One end of the first memory cell is electrically connected to the wiring WBL1 through the selection transistor. The other end of the first memory cell is electrically connected to one end of the second memory cell. The other end of the second memory cell is electrically connected to the wiring WBL1. When the selection transistor is on, data in the first memory node is rewritten by a signal supplied through the selection transistor to the wiring WBL1. When the selection transistor is off, data in the first memory node is rewritten by a signal supplied through the second memory node to the wiring WBL1.
Type:
Grant
Filed:
December 2, 2019
Date of Patent:
November 17, 2020
Assignee:
Semiconductor Energy Laboratory Co., Ltd.
Abstract: The embodiments described herein facilitate performing bipolar switching of a confined phase change memory (PCM) with a metallic liner, wherein the phase change memory and the metallic liner are located between a first electrode and a second electrode of a semiconductor structure, wherein a first voltage is applied to the first electrode while the second electrode is grounded, and wherein a second voltage is applied to the second electrode while the first electrode is grounded. The bipolar switching can be performed so as to produce a plurality of resistance states. Thus, this confined PCM can be utilized as a multi-level cell (MLC) memory.
Type:
Grant
Filed:
April 20, 2018
Date of Patent:
November 3, 2020
Assignee:
INTERNATIONAL BUSINESS MACHINES CORPORATION
Inventors:
Wanki Kim, Matthew Joseph BrightSky, Yu Zhu, Yujun Xie
Abstract: A memory device includes a memory bank comprising a plurality of addressable groups of memory cells comprising a primary and a secondary set of addressable groups and control circuitry comprising repair address match circuitry, comprising first inputs to receive row address values corresponding to a first group of the primary set of addressable groups, second inputs to receive fused address values corresponding to a second group of the primary set of addressable groups having been repaired, and a selection element, comprising a first selection input to receive a first signal indicative of whether a first row address value is identical to a first fused address value, a second selection input to receive a second signal indicative of whether a second row address value is identical to a second fused address value, and an output to selectively transmit a result as one of the first or second signal.
Type:
Grant
Filed:
January 3, 2019
Date of Patent:
November 3, 2020
Assignee:
Micron Technology, Inc.
Inventors:
Christopher Gordon Wieduwilt, Kevin Gustav Werhane
Abstract: A method for operating a Coriolis mass flowmeter in which the interferences when calculating the medium parameters is considered by the eigenfrequency (f01) of the oscillation of the measuring tube being determined in the first and second natural modes during operation of the Coriolis mass flowmeter, and at least one medium parameter ({dot over (m)}) is calculated with the aid of the oscillation measuring variable (?t) by means of a calculation rule representing a mathematic relation between the oscillation measuring variable (?t), the medium parameter ({dot over (m)}) and the eigenfrequencies (f01, f02) of the oscillations of the measuring tube in the first natural mode and the second natural mode, and the medium parameter ({dot over (m)}) being determined taking into consideration the current determined eigenfrequencies (f01, f02) of the oscillations of the measuring tub in the first natural mode and the second natural mode as well as the oscillation measuring variable (?t).
Abstract: An electrically programmable fuse circuit, a programming method for electrically programmable fuse, and a state detection method for electrically programmable fuse are provided. The electrically programmable fuse circuit includes a plurality of fuse cells connected in series, wherein in each of the plurality of fuse cells, one terminal of the fuse cell is connected with a first programming terminal corresponding to the fuse cell, and the other terminal of the fuse cell is connected with a second programming terminal corresponding to the fuse cell via a transistor. Reliability of electrically programmable fuses may be improved.
Abstract: Embodiments of the disclosure are drawn to apparatuses and methods for charging memory data lines when a high charge level is to be written to a memory. The apparatus may include a write amplifier that includes one or more additional pull-up drivers for charging the memory data lines. Control logic may control when additional pull-up drivers are activated. Control logic may control when main data lines are coupled to shared data lines. Methods for charging memory data lines may include providing control signals that indicate which main data lines are coupled to shared data lines and when a write command is received. Methods may include providing a signal that is indicative of the data to be written. The control signals and signal indicative of the data to be written may be used to activate one or more pull-up drivers to charge one or more data lines.
Abstract: According to one embodiment, a memory system comprising includes a semiconductor memory and a memory controller. The memory controller is configured to obtain first data read from the semiconductor memory using a first voltage, obtain second data read from the semiconductor memory using a second voltage, calculate a first value for a first section of the first data using the first data and the second data, calculate a second value for a second section of the first data using the first data and the second data, calculate a third value for a third section of the first data using the first data and the second data, and correct an error of the first data using the first to third values.
Abstract: A semiconductor package includes an external power supply node, a current monitoring node, and a plurality of semiconductor dies. Each semiconductor die of the plurality of semiconductor dies includes a first circuit and a second circuit. The first circuit is configured to supply a first operating current to that semiconductor die from the external power supply node. The second circuit is configured to mirror the first operating current on a reduced scale and output the mirrored first operating current to the current monitoring node. The mirrored first operating current from each semiconductor die of the plurality of semiconductor dies is summed on the current monitoring node.
Abstract: A display device includes: a display unit including scan lines, data lines, unit areas corresponding to intersections of the scan lines and the data lines, the unit areas including first unit areas in an effective display area, second unit areas in a dummy area around the effective display area, some of the second unit areas being smaller than the first unit areas, and pixels in the first unit areas; a timing controller configured to receive first data including image data corresponding to the first and second unit areas and to convert the first data into second data corresponding to the effective display area; and a data driver configured to generate a data signal corresponding to the second data. The display unit includes a first horizontal line having fewer pixels than the number of the data lines.
Type:
Grant
Filed:
August 19, 2019
Date of Patent:
October 13, 2020
Assignee:
Samsung Display Co., Ltd.
Inventors:
Hong Soo Kim, Jun Heyung Jung, Ja Kyoung Jin
Abstract: A memory channel including an internal clock circuit is disclosed. The clock circuit may synthesize an internal clock signal for use by one or more components of the memory channel. The internal clock signal may have a different frequency than an external clock frequency. The memory channel may include multiple clock circuits that generate multiple internal clock signals. Each portion of the memory channel associated with a different clock circuit may be phase and/or frequency independent of the other portions of the memory channel. The clock circuit may synthesize an internal clock signal based on an external clock signal. The clock circuit may use encoded timing data from an encoded I/O scheme to align the phase of the internal clock signal to a data signal.
Type:
Grant
Filed:
September 21, 2018
Date of Patent:
October 6, 2020
Assignee:
Micron Technology, Inc.
Inventors:
Dean Gans, Moo Sung Chae, Daniel Skinner