Patents Examined by Daniel C. McCracken
  • Patent number: 11186488
    Abstract: The disclosed method includes a separation step wherein composite particles are transferred to a vicinity of an inlet of a fibrous carbon nanostructure path configured to recover fibrous carbon nanostructures by allowing the fibrous carbon nanostructures to pass therethrough, and a fluid flowing toward the inlet of the path and an external force including a component of a direction opposite to the direction in which the fluid flows are applied to the composite particles to separate the fibrous carbon nanostructures and a particulate ceramic support substrate; and a recovery step wherein the separated fibrous carbon nanostructures are transferred to an interior of the path for recovery by a flow of the fluid, with the separated substrate transferred away from the fibrous carbon nanostructure path for recovery, wherein, in the separation step, the external force applied to the substrate is greater than that applied to the fibrous carbon nanostructures.
    Type: Grant
    Filed: March 25, 2019
    Date of Patent: November 30, 2021
    Assignee: ZEON CORPORATION
    Inventor: Takayoshi Hongo
  • Patent number: 11180372
    Abstract: Methods of forming graphene may include reacting a dispersed mixture, comprising fly ash, a charged heteroaromatic compound, particularly a pyridinium compound, such as a 1-(4-pyridyl)-pyridinium salt, and a solvent, particularly an alcohol, such as ethanol, with a polymeric oxidizing agent, preferably polymer-supported pyridinium chlorochromate, to form a second mixture; and contacting the second mixture at a temperature of 120 to 180° C. with a gas stream comprising at least 0.1 vol. % CH4 and at least 10 vol. % H2 to form graphene on the fly ash. Methods of managing waste may comprise using fly ash waste to produce graphene. Devices for implementing such methods may involve steel cylindrical reaction vessels including a cover through which a valve-stoppable pipe is fed, which reaction vessel is at least partially surrounded by a heating device, and suitable for handling solvent and fly ash, as well as for receiving gas inflow through the pipe.
    Type: Grant
    Filed: June 28, 2021
    Date of Patent: November 23, 2021
    Assignee: King Abdulaziz University
    Inventors: Waleed Elsayed Mahmoud Elsayed, Ahmed Abdullah Salem Al-Ghamdi, Yusuf Abdulaziz Al-Turki
  • Patent number: 11181029
    Abstract: An element frame for holding monoliths containing catalysts in the flow of exhaust gases from a combustion source, the element frame comprising two pairs of opposing walls, wherein the walls form a rectangular or square shape, an interior formed by the walls, an inlet end, an outlet end, at least one locking element, at least one mat and at least one monolith comprising an inlet, an outlet, four sides and at least one catalyst effective in reducing the concentration of one or more gases in the exhaust gas, wherein the at least one mat and the at least one monolith being positioned in the interior of the element frame so that there is at least one mat between the monolith and each adjacent wall, each locking element extending across the inlet end or outlet end of the element frame and being connected to two opposite sides of the element frame.
    Type: Grant
    Filed: November 22, 2019
    Date of Patent: November 23, 2021
    Assignee: Johnson Matthey Catalysts (Germany) GmbH
    Inventors: Robert Kleuderlein, Dirk Reichert, Harald Scherbel
  • Patent number: 11174166
    Abstract: Methods for making porous nanotube fabrics are disclosed. Within the methods of the present disclosure, a porogen-loaded nanotube application solution is formed by combining a first volume of nanotube elements with a second volume of fuel material in a liquid medium to form a porogen-loaded nanotube application solution. In some aspects of the present disclosure, a third volume of oxidizer material is also combined into the liquid medium. A porogen-loaded nanotube fabric is formed by depositing the porogen-loaded nanotube application solution. In some aspects of the present disclosure, the fuel material within the porogen-loaded nanotube application solution will react with oxidizer material when heat is applied to a sufficient degree and volatize. The off-gassed fuel material will then leave behind voids in the nanotube fabric, rendering the fabric porous.
    Type: Grant
    Filed: December 20, 2019
    Date of Patent: November 16, 2021
    Assignee: ZEON Corporation
    Inventors: Rahul Sen, Joseph James McDermott, Sushanta K. Pal, Thomas Rueckes
  • Patent number: 11171324
    Abstract: A method of producing a composite product is provided. The method includes providing a fluidized bed of metal oxide particles in a fluidized bed reactor, providing a catalyst or catalyst precursor in the fluidized bed reactor, providing a carbon source in the fluidized bed reactor for growing carbon nanotubes, growing carbon nanotubes in a carbon nanotube growth zone of the fluidized bed reactor, and collecting a composite product comprising metal oxide particles and carbon nanotubes.
    Type: Grant
    Filed: March 7, 2017
    Date of Patent: November 9, 2021
    Assignees: HONDA MOTOR CO., LTD., NANOSYNTHESIS PLUS, LTD.
    Inventors: Avetik Harutyunyan, Neal Pierce, Elena Mora Pigos
  • Patent number: 11161744
    Abstract: Methods that expand the properties of laser-induced graphene (LIG) and the resulting LIG having the expanded properties. Methods of fabricating laser-induced graphene from materials, which range from natural, renewable precursors (such as cloth or paper) to high performance polymers (like Kevlar). With multiple lasing, however, highly conductive PEI-based LIG could be obtained using both multiple pass and defocus methods. The resulting laser-induced graphene can be used, inter alia, in electronic devices, as antifouling surfaces, in water treatment technology, in membranes, and in electronics on paper and food Such methods include fabrication of LIG in controlled atmospheres, such that, for example, superhydrophobic and superhydrophilic LIG surfaces can be obtained. Such methods further include fabricating laser-induced graphene by multiple lasing of carbon precursors. Such methods further include direct 3D printing of graphene materials from carbon precursors.
    Type: Grant
    Filed: November 6, 2017
    Date of Patent: November 2, 2021
    Assignees: William Marsh Rice University, B.G. Negev Technologies and Applications, Ltd., at Ben-Gurion University
    Inventors: James M. Tour, Yieu Chyan, Christopher John Arnusch, Swatantra Pratap Singh, Yilun Li, Duy X. Luong, Carter Kittrell, Ruquan Ye, Jordan Miller, Ian Kinstlinger, Savannah Cofer
  • Patent number: 11154843
    Abstract: Methods of producing a nano-catalyst material including forming a plurality of nano-scale features on a surface of a substrate material. The nano-catalyst material may be used for forming anchored nanostructure materials by heating the nano-catalyst material under a protective atmosphere to a temperature ranging from about 450° C. to about 1500° C. and exposing the heated nano-catalyst to an organic vapor to affix a separate nanostructure to each of the plurality of nano-scale features. The nano-scale features may be formed on the surface of the substrate material by mechanical or thermal processes.
    Type: Grant
    Filed: December 11, 2018
    Date of Patent: October 26, 2021
    Assignees: Consolidated Nuclear Security, LLC, UT-Battelle, LLC
    Inventors: Paul A. Menchhofer, Roland D. Seals, Jane Y. Howe, Wei Wang
  • Patent number: 11155465
    Abstract: A cross-linked structure of a carbon material is excellent in mechanical strength, such as tensile strength. The carbon materials such as carbon nanotube, graphite, fullerene, and carbon nanocoil, are cross-linked with each other. The carbon materials are cross-linked through a linking group derived from a nucleophilic compound having two or more nucleophilic groups in the molecule.
    Type: Grant
    Filed: April 22, 2016
    Date of Patent: October 26, 2021
    Assignee: Stella Chemifa Corporation
    Inventors: Yoshinori Sato, Kazutaka Hirano, Yuki Kikui
  • Patent number: 11142457
    Abstract: A method for producing a carbon nanohorn aggregate including a fibrous carbon nanohorn aggregate, comprising continuously irradiating with laser light a surface of a carbon target containing a metal catalyst such as iron, wherein a laser irradiation position is moved at a constant speed so that a power density of the laser light with which the surface of the carbon target is irradiated is generally constant, and irradiation is moved to a region adjacent to a region previously irradiated with the laser light, in a direction different from a moving and traveling direction of the laser irradiation position at an interval equal to or more than a width of a degradation region formed around the region irradiated with the laser light
    Type: Grant
    Filed: February 23, 2018
    Date of Patent: October 12, 2021
    Assignee: NEC CORPORATION
    Inventor: Ryota Yuge
  • Patent number: 11142460
    Abstract: The present disclosure provides a method for repairing defect of graphene, including: firstly introducing a composite fluid containing a reactive compound and a supercritical fluid to a reactor where the graphene powder has been placed, and impregnating the graphene powder with the composite fluid to passivate and repair the defect of graphene, wherein the reactive compound includes carbon, hydrogen, nitrogen, silicon or oxygen element; and separating the composite fluid from the graphene powder, simultaneously using molecular sieves to absorb the graphene from the composite fluid. The present disclosure further provides the graphene powder prepared by the method above. With the method of the present disclosure, it effectively reduces the ratio of the defect of the graphene, increases the content of the graphene, and has less-layer graphene with high thermal conductivity and electrical conductivity.
    Type: Grant
    Filed: May 15, 2019
    Date of Patent: October 12, 2021
    Assignee: XSENSE TECHNOLOGY CORPORATION
    Inventors: Zhen-Yu Li, Po-Min Tu, Chia-Jung Chen, Yeu-Wen Huang
  • Patent number: 11142459
    Abstract: Provided is a powder mass of multiple porous graphene balls, wherein at least one of the porous graphene balls comprises multiple graphene sheets having a catalyst, in a form of nanoparticles or coating having a diameter or thickness from 0.3 nm to 10 nm, bonded to or supported by graphene sheet surfaces, wherein the porous graphene balls have a density from 0.01 to 1.7 g/cm3 (preferably and typically from 0.1 to 1.5 g/cm3), and a specific surface area from 50 to 3,000 m2/g (preferably and typically from 200 to 2,630 m2/g). A method of producing such porous graphene balls is provided as well. Also provided is a gas storage device containing the invented powder mass as a gas-absorbing, gas-adsorbing, gas-capturing, or gas-storing medium to store a gas species therein.
    Type: Grant
    Filed: April 3, 2019
    Date of Patent: October 12, 2021
    Assignee: Nanotek Instruments Group, LLC
    Inventors: Aruna Zhamu, Song-Hai Chai, Bor Z. Jang
  • Patent number: 11136240
    Abstract: The invention relates to the production of carbon nanomaterials, for example graphene, and can be used to produce graphene for use in nanoelectronics. Graphene is produced by stratifying graphite particles, differing in that graphite particles undergo electrodynamic fluidization in a vacuum in which the energy of the graphite particles exceeds the work necessary for their cleavage along the cleavage planes on graphene layers during brittle fracture when striking against the electrodes. The method makes it possible to obtain graphene with high productivity, economy and purity of the product.
    Type: Grant
    Filed: May 12, 2017
    Date of Patent: October 5, 2021
    Inventor: Tatyana Sergeevna Zhebeleva
  • Patent number: 11135555
    Abstract: This invention relates generally to a chitosan-graphene oxide membrane and process of making the same. The nanocomposite membrane can filter water and remove contaminants without fouling like other commercially-available polymer-based water filters. The membrane can be used as a flat sheet filter or can be engineered in a spiral filtration module. The membrane is scalable and tunable for many water contaminants including pharmaceuticals, pesticides, herbicides, and other organic chemicals. The membrane uses chitosan, which is low-cost, renewable biopolymer typically considered to be a waste product and the second most abundant biopolymer on Earth, thus making the membrane an environmentally-friendly product choice.
    Type: Grant
    Filed: March 17, 2020
    Date of Patent: October 5, 2021
    Assignees: BOARD OF TRUSTEES OF THE UNIVERSITY OF ARKANSAS, THE UNITED STATES OF AMERICA, AS REPRESENTED BY THE SECRETARY OF THE ARMY
    Inventors: Christopher S. Griggs, Jose A. Mattei-Sosa, Luke A. Gurtowski, Lauren F. Greenlee, Mojtaba Abolhassani
  • Patent number: 11130140
    Abstract: The present invention provides an apparatus for the production of Graphene and similar atomic scale laminar materials by the delamination of a bulk laminar material, such as graphite; the apparatus comprising: a pump (112) for pumping a fluid, the fluid being a suspension of solid particles of the bulk laminar material, at a pressure of greater than 1 MPa, along a fluid conduit (12) and against; an impact head (16) having an impact face perpendicular or substantially perpendicular to the trajectory of the incoming fluid, so as to form a narrow and variable gap (20) and wherein that variation is mediated by means of a pneumatic pressure directly or indirectly in opposition to the force applied to the impact head along the principle axis by, in use, the pressure applied by the pumped fluid. This apparatus provides a self-unblocking delamination apparatus whilst maintaining high product quality and consistency.
    Type: Grant
    Filed: October 13, 2017
    Date of Patent: September 28, 2021
    Assignee: Thomas Swan & Co. LTD.
    Inventors: Paul Ladislaus, Lee Glasgow, Ronan McHale
  • Patent number: 11117803
    Abstract: A method for manufacturing multi-wall carbon nanotubes, includes the steps of: (a) dissolving a metal precursor in a solvent to prepare a precursor solution; (b) perform thermal decomposition while spraying the precursor solution into a reactor, thereby forming a catalyst powder; and (c) introducing the catalyst powder into a fluidized-bed reactor heated to 600-900° C. and spraying a carbon-based gas and a carrier gas to synthesize multi-wall carbon nanotubes from the catalyst powder, wherein steps (a) to (c) are performed in a continuous type and wherein the catalyst powder contains metal components according to equation 1 below. <Equation 1> Ma:Mb=x:y, wherein Ma represents at least two metals selected from Fe, Ni, Co, Mn, Cr, Mo, V, W, Sn, and Cu; Mb represents at least one metal selected from Mg, Al, Si, and Zr; x and y each represent the molar ratio of Ma and Mb; and x+y=10, 2.0?x?7.5, and 2.5?y?8.0.
    Type: Grant
    Filed: March 2, 2018
    Date of Patent: September 14, 2021
    Assignee: KOREA KUMHO PETROCHEMICAL CO., LTD.
    Inventors: Sang Hyo Ryu, Hyun Kyung Sung, Chung Heon Jeong, Dong Hwan Kim
  • Patent number: 11117806
    Abstract: A silicon carbide-graphite composite is described, including (i) interior bulk graphite material and (ii) exterior silicon carbide matrix material, wherein the interior bulk graphite material and exterior silicon carbide matrix material inter-penetrate one another at an interfacial region therebetween, and wherein graphite is present in inclusions in the exterior silicon carbide matrix material. Such material may be formed by contacting a precursor graphite article with silicon monoxide (SiO) gas under chemical reaction conditions that are effective to convert an exterior portion of the precursor graphite article to a silicon carbide matrix material in which graphite is present in inclusions therein, and wherein the silicon carbide matrix material and interior bulk graphite material interpenetrate one another at an interfacial region therebetween.
    Type: Grant
    Filed: August 18, 2016
    Date of Patent: September 14, 2021
    Assignee: ENTEGRIS, INC.
    Inventors: Troy Scoggins, Rex Gerald Sheppard, Abuagela H. Rashed, Jonathan Loyd Burr
  • Patent number: 11118073
    Abstract: The present disclosure provides supercapacitors that may avoid the shortcomings of current energy storage technology. Provided herein are electrochemical systems, comprising three dimensional porous reduced graphene oxide film electrodes. Prototype supercapacitors disclosed herein may exhibit improved performance compared to commercial supercapacitors. Additionally, the present disclosure provides a simple, yet versatile technique for the fabrication of supercapacitors through the direct preparation of three dimensional porous reduced graphene oxide films by filtration and freeze casting.
    Type: Grant
    Filed: May 31, 2019
    Date of Patent: September 14, 2021
    Assignee: The Regents of the University of California
    Inventors: Richard Barry Kaner, Yuanlong Shao
  • Patent number: 11121418
    Abstract: The invention discloses the discharging method and discharging agent for recycling waste batteries. It immerse the waste batteries with coke powder to form a discharging circuit and to remove the residual power off the waste batteries before destruction of the batteries. The discharging performance varied with resistivity of the coke powder, and can be measured by watching the temperature and/or the temperature change trend. The resistivity depends on the ratio of carbon composition of the coke powder and the contact quality between the coke powder and the waste batteries, and the pressure on coke powder can adjust the contact quality. Therefore, the method is able to adjust the discharging performance by adjusting the pressure to meets the discharging requirements of efficiency and safety.
    Type: Grant
    Filed: December 31, 2019
    Date of Patent: September 14, 2021
    Assignee: Omega Harvested Metallurgical, Inc.
    Inventor: Hsinghua Cheng
  • Patent number: 11111149
    Abstract: Methods of forming graphene may include reacting a dispersed mixture, comprising fly ash, a charged heteroaromatic compound, particularly a pyridinium compound, such as a 1-(4-pyridyl)-pyridinium salt, and a solvent, particularly an alcohol, such as ethanol, with a polymeric oxidizing agent, preferably polymer-supported pyridinium chlorochromate, to form a second mixture; and contacting the second mixture at a temperature of 120 to 180° C. with a gas stream comprising at least 0.1 vol. % CH4 and at least 10 vol. % H2 to form graphene on the fly ash. Methods of managing waste may comprise using fly ash waste to produce graphene. Devices for implementing such methods may involve steel cylindrical reaction vessels including a cover through which a valve-stoppable pipe is fed, which reaction vessel is at least partially surrounded by a heating device, and suitable for handling solvent and fly ash, as well as for receiving gas inflow through the pipe.
    Type: Grant
    Filed: April 26, 2021
    Date of Patent: September 7, 2021
    Assignee: King Abdulaziz University
    Inventors: Waleed Elsayed Mahmoud Elsayed, Ahmed Abdullah Salem Al-Ghamdi, Yusuf Abdulaziz Al-Turki
  • Patent number: 11111148
    Abstract: Provided are a graphene and a preparation method therefor. The method for preparing a graphene comprises following steps: i) placing a mixture of a magnesium powder and a solid oxide powder in a carbon dioxide-containing environment; and ii) heating the mixture to enable the magnesium powder to react with carbon dioxide, thereby obtaining a graphene. The specific surface area of the grapheme is 350-750 m2/g, and the pore volume is 1-2 cm3/g. The method for preparing a graphene in the present invention is simple and easy to carry out, and has a low cost and a high yield; and the graphene product has few impurities, a high carbon-oxygen ratio, and excellent capacitance performance and electrochemical stability.
    Type: Grant
    Filed: March 10, 2017
    Date of Patent: September 7, 2021
    Assignee: INSTITUTE OF ELECTRICAL ENGINEERING, CHINESE ACADEMY OF SCIENCES
    Inventors: Yanwei Ma, Chen Li, Xiong Zhang