Patents Examined by Daniel Dobson
  • Patent number: 9537574
    Abstract: An optical transmitting and receiving unit includes: an optical transmitting module having a light emitting element and having a metal case that stores the light emitting element; an optical connector having a ferrule for holding an optical fiber and having a flange portion provided at one end of the ferrule, the ferrule being inserted into a sleeve of the metal case to connect the optical connector with the optical transmitting module; and a tubular waterproof cap that has a bottom, with one end open and the other end closed, and caps the optical connector to seal an optical connecting portion between the optical connector and the optical transmitting module in a watertight manner. The metal case has step portions with different outside diameters. One of the step portions closest to the optical connecting portion contacts an inner surface of the waterproof cap along an entire circumference thereof.
    Type: Grant
    Filed: March 31, 2016
    Date of Patent: January 3, 2017
    Assignee: OLYMPUS CORPORATION
    Inventors: Tsutomu Urakawa, Susumu Kawata, Hideaki Kinouchi
  • Patent number: 9531470
    Abstract: Embodiments of the present invention relate to the field of network communications and specifically discloses a method for monitoring optical performance of a wavelength channel, including: receiving, by a first node, an optical signal over an operating wavelength and obtaining, by the first node, optical performance of the unestablished wavelength channel by monitoring the optical signal at a receiving end. Embodiments of the present invention further disclose a system and a node device for monitoring optical performance of a wavelength channel.
    Type: Grant
    Filed: October 23, 2014
    Date of Patent: December 27, 2016
    Assignee: HUAWEI TECHNOLOGIES CO., LTD.
    Inventors: Enbo Zhou, Sen Zhang
  • Patent number: 9525210
    Abstract: Aspects of the subject disclosure may include, for example, a transmission device that includes a transmitter that generates a first electromagnetic wave to convey data. A coupler couples the first electromagnetic wave to a single wire transmission medium having an outer surface, to forming a second electromagnetic wave that is guided to propagate along the outer surface of the single wire transmission medium via at least one guided wave mode that includes an asymmetric or non-fundamental mode having a lower cutoff frequency. A carrier frequency of the second electromagnetic wave is selected to be within a limited range of the lower cutoff frequency, so that a majority of the electric field is concentrated within a distance from the outer surface that is less than half the largest cross sectional dimension of the single wire transmission medium, and/or to reduce propagation loss. Other embodiments are disclosed.
    Type: Grant
    Filed: March 15, 2016
    Date of Patent: December 20, 2016
    Assignee: AT&T Intellectual Property I, L.P.
    Inventors: Paul Shala Henry, Robert Bennett, Irwin Gerszberg, Farhad Barzegar, Donald J Barnickel, Thomas M. Willis, III
  • Patent number: 9525506
    Abstract: An optical line terminal (OLT) comprises a target OLT channel termination (CT), and a source OLT CT in communication with the target OLT CT, wherein the source OLT CT is configured to exchange tuning messages with the target OLT CT to initiate upstream wavelength tuning of an optical network unit (ONU), wherein the source OLT CT is configured to transmit a tuning request to the ONU after the tuning messages have been exchanged and to receive a tuning acknowledgement message from the ONU indicating that the tuning request will be executed, wherein the source OLT CT is configured to transmit a broadcast notification message to all OLT CTs within the OLT, except for the source OLT CT, after receipt of the tuning acknowledge message from the ONU, and wherein the broadcast notification message includes a tuning time of the ONU.
    Type: Grant
    Filed: April 22, 2015
    Date of Patent: December 20, 2016
    Assignee: Futurewei Technologies, Inc.
    Inventors: Bo Gao, Yuanqiu Luo, Frank Effenberger, Jianhe Gao
  • Patent number: 9520960
    Abstract: An optical network packet configured to transmit over an optical communication link from a first optical network having a first control plane to a second optical network having a second control plane is generated. Generating the optical network packet comprises generating the packet configured to be transmitted from the first optical network to the second optical network in the optical domain.
    Type: Grant
    Filed: January 27, 2014
    Date of Patent: December 13, 2016
    Assignee: Cisco Technology, Inc.
    Inventor: David Bianchi
  • Patent number: 9520945
    Abstract: Aspects of the subject disclosure may include, for example, a system for modulating a first electrical signal to generate first modulated electromagnetic waves, and transmitting the first modulated electromagnetic waves on a waveguide located in proximity to a transmission medium. In one embodiment, the first electromagnetic waves can induce second electromagnetic waves that propagate on an outer surface of the transmission medium. The second electromagnetic waves can have a first spectral range that is divided into, contains or otherwise includes a first control channel and a first plurality of bands. Other embodiments are disclosed.
    Type: Grant
    Filed: October 21, 2014
    Date of Patent: December 13, 2016
    Assignee: AT&T INTELLECTUAL PROPERTY I, L.P.
    Inventors: Irwin Gerszberg, Farhad Barzegar, Paul Shala Henry, Robert Bennett, Donald J Barnickel, Thomas M. Willis, III
  • Patent number: 9515741
    Abstract: An optical transceiver module includes a first flexible circuit board and a second flexible circuit board; a light receiving unit and a light transmitting unit disposed on the first flexible circuit board and the second flexible circuit board, respectively; a printed circuit board connected to the first flexible circuit board and the second flexible circuit board, and including a connecting point; and a signal processing unit disposed on at least one of the first flexible circuit board, the second flexible circuit board, and the printed circuit board. The signal processing unit processes optical signals received by the light receiving unit and transmits the signals to the connecting point of the printed circuit board, and processes electrical signals transmitted from the connecting point of the printed circuit board and transmits the signals out through the light transmitting unit.
    Type: Grant
    Filed: April 22, 2015
    Date of Patent: December 6, 2016
    Assignee: InnoLight Technology (Suzhou) LTD.
    Inventors: Kewu Wang, Xiangzhong Wang, Yuzhou Sun, Xinjun Zhou, Xiaoming Xu
  • Patent number: 9509409
    Abstract: Disclosed is an optical transceiver which includes an optical transmitter converting a first electrical signal into a first optical signal, an optical receiver converting a second optical signal into a second electrical signal, and a processing unit operatively coupled to the optical transmitter and the optical receiver. The processing unit is configured to obtain first wavelength information of the first optical signal and second wavelength information of the second optical signal and compare the first wavelength information and the second wavelength information to control a wavelength separation interval between the first optical signal and the second optical signal.
    Type: Grant
    Filed: December 2, 2014
    Date of Patent: November 29, 2016
    Assignee: OE Solutions America, Inc.
    Inventors: Wanseok Seo, Jong Ho Kim, Moon Soo Park, Joon Sang Yu
  • Patent number: 9509410
    Abstract: A high-speed 100G optical transceiver, such as for InfiniBand and Ethernet, with associated mapping to frame various different protocols. The optical transceiver utilizes an architecture which relies on standards-compliant (i.e., multi-sourced) physical client interfaces. These client interfaces are back-ended with flexible, programmable Field Programmable Gate Array (FPGA) modules to accomplish either InfiniBand or Ethernet protocol control, processing, re-framing, and the like. Next, signals are encoded with Forward Error Correction (FEC) and can include additional Optical Transport Unit (OTU) compliant framing structures. The resulting data is processed appropriately for the subsequent optical re-transmission, such as, for example, with differential encoding, Gray encoding, I/Q Quadrature encoding, and the like. The data is sent to an optical transmitter block and modulated onto an optical carrier. Also, the same process proceeds in reverse on the receive side.
    Type: Grant
    Filed: January 20, 2016
    Date of Patent: November 29, 2016
    Assignee: Ciena Corporation
    Inventors: John P. Mateosky, Michael Y. Frankel
  • Patent number: 9499284
    Abstract: A multi-functional optical subsystem for a spacecraft includes a laser diode module having output optics; an imaging and communication detector assembly; and a forward metering structure. The multi-functional optical subsystem is adapted for laser-based optical communication and attitude determination. According to embodiments, the subsystem fits within a small satellite having less than about 20 kg mass and less than about 10,000 cm3 total volume.
    Type: Grant
    Filed: March 18, 2014
    Date of Patent: November 22, 2016
    Assignee: Planetary Resources Development Corp.
    Inventors: Chris Voorhees, Chris Lewicki
  • Patent number: 9503181
    Abstract: A doped fiber amplifier (e.g., an erbium-doped fiber amplifier—EDFA) module is configured to include metrology functionality for performing real-time measurements of the fiber spans connected to the EDFA. In one embodiment, a separate component utilized to perform optical time domain reflectometry (OTDR) measurements is embedded with the EDFA module. The OTDR measurement component includes its own laser source and detector, which are used to analyze the input and output fiber spans associated with the EDFA. In another embodiment, the pump laser of the EDFA is also used as the optical probe light source for the OTDR component, where the source is either “switched” or “shared” between performing amplification and providing OTDR measurements. In yet another embodiment, a “dual pump” source is included with the OTDR component itself and modified to utilize one laser for amplification and the other for OTDR purposes.
    Type: Grant
    Filed: January 6, 2015
    Date of Patent: November 22, 2016
    Assignee: II-VI Incorporated
    Inventors: Ian Peter McClean, Aravanan Gurusami
  • Patent number: 9496964
    Abstract: We disclose an optoelectronic circuit that is configurable to operate as an FIR filter, in which the tapping and the weighting of the signal that is being equalized are performed in the optical domain, whereas the summation of the weighted signals is performed in the electrical domain after the corresponding optical signals are converted into electrical form using an array of photodetectors. Photodetectors in the array are arranged such that some of them contribute to the equalized electrical signal with a positive polarity and the others contribute to the equalized electrical signal with a negative polarity. As a result, at least some of the tap weights used in the FIR filter can be made variable between a positive value and a negative value.
    Type: Grant
    Filed: March 16, 2015
    Date of Patent: November 15, 2016
    Assignee: Alcatel-Lucent USA Inc.
    Inventors: Jeffrey H. Sinsky, Chia-Ming Chang
  • Patent number: 9497134
    Abstract: A Wavelength Division Multiplexing (WDM) multi-mode switching system and method and method provides concurrent switching in various switching modes including, but not limited to, an electronic packet switching (EPS) mode, optical circuit switching (OCS) mode, and optical burst switching (OBS) mode. Edge routers in the WDM multi-mode switching systems may provide a traffic management module that processes incoming data and routes the data for transmission in an electronic packet switching (EPS), optical burst switching (OBS), or optical circuit switching (OCS) modes via a WDM link.
    Type: Grant
    Filed: July 6, 2015
    Date of Patent: November 15, 2016
    Assignee: UNIVERSITY OF HOUSTON SYSTEM
    Inventor: Yuhua Chen
  • Patent number: 9491528
    Abstract: A communication resource in a network environment analyzes upstream communications received over multiple passive optical networks. The upstream communications are received from multiple client devices in different passive optical networks. Based on analysis of the upstream communications, via an active or passive approach, a corresponding communication resource detects in which of the multiple passive optical networks each of the client devices reside. A scheduler resource can be configured to use the class information as a basis to schedule subsequent upstream communication, avoiding occurrence of optical beat interference.
    Type: Grant
    Filed: October 23, 2013
    Date of Patent: November 8, 2016
    Assignee: Time Warner Cable Enterprises LLC
    Inventor: Paul D. Brooks
  • Patent number: 9490901
    Abstract: A bias monitoring method and apparatus and a transmitter, the bias monitoring apparatus being used for monitoring deviation of a direct current bias point of an optoelectronic modulator and including: a first signal processing unit configured to perform first signal processing on an electric driving signal inputted into the optoelectronic modulator, so as to output a reference signal; a second signal processing unit configured to perform second signal processing on an electric output signal obtained based on an optical signal outputted by the optoelectronic modulator, so as to output a monitoring signal; and a monitoring signal calculating unit configured to calculate correlation between the reference signal and the monitoring signal, and output a calculation result of the correlation as a bias monitoring signal. The sensitivity of the bias monitoring apparatus may be improved, and complexity of hardware may be lowered.
    Type: Grant
    Filed: April 21, 2015
    Date of Patent: November 8, 2016
    Assignee: FUJITSU LIMITED
    Inventors: Ying Zhao, Liang Dou, Zhenning Tao
  • Patent number: 9485027
    Abstract: Methods, algorithms, architectures, circuits, and/or systems for dynamically allocating memory for storing parametric data in optical transceivers are disclosed. The optical transceiver can include an optical receiver configured to receive optical data; an optical transmitter configured to transmit optical data; a microprocessor configured to access data for each of a plurality of parameters that are related to operation of at least one of the optical receiver and the optical transmitter; one or more memories configured to store the data at a plurality of locations that are dynamically allocated by the microprocessor; and an interface configured to receive a request for data for one or more of the parameters from a host and provide the data in response to the request. In the present disclosure, the host is unaware of the locations at which the parametric data are stored.
    Type: Grant
    Filed: June 20, 2014
    Date of Patent: November 1, 2016
    Assignee: MAGNOLIA SOURCE (CAYMAN) LIMITED
    Inventor: Todd Rope
  • Patent number: 9479262
    Abstract: A method of operating a BPSK modulator includes receiving an RF signal at the BPSK modulator and splitting the RF signal into a first portion and a second portion that is inverted with respect to the first portion. The method also includes receiving the first portion at a first arm of the BPSK modulator, receiving the second portion at a second arm of the BPSK modulator, applying a first tone to the first arm of the BPSK modulator, and applying a second tone to the second arm of the BPSK modulator. The method further includes measuring a power associated with an output of the BPSK modulator and adjusting a phase applied to at least one of the first arm of the BPSK modulator or the second arm of the BPSK modulator in response to the measured power.
    Type: Grant
    Filed: February 19, 2016
    Date of Patent: October 25, 2016
    Assignee: Skorpios Technologies, Inc.
    Inventors: Stephen B. Krasulick, Timothy Creazzo, Kalpit Jha, Elton Marchena, Amit Mizrahi
  • Patent number: 9467756
    Abstract: A modular system for the connection of an external communication network to a user network of a building includes: a user module including: a passage opening of a connection cable of the user network including optical fibers associated with respective users and adapters associated with respective optical fibers of the connection cable of the user network, and an operator module including: an inlet opening of at least one connection cable to the external communication network including optical fibers and an outlet opening of fiber optic connection elements connected to the external communication network and provided with a connector at a terminal end thereof. The user module and the operator module are structurally independent from each other and the external communication network is operatively associated with the user network by means of a connection of the connectors of the fiber optic connection elements with respective selected adapters of the user module.
    Type: Grant
    Filed: April 28, 2014
    Date of Patent: October 11, 2016
    Assignee: PRYSMIAN S.P.A.
    Inventor: Arnaud Le Dissez
  • Patent number: 9462173
    Abstract: An information communication method is provided for obtaining information from a subject using a terminal device. The method includes obtaining and holding identification information of devices, and service information associated with the identification information, from a server. The method also includes setting an exposure time of an image sensor so that a bright line corresponding to each of the plurality of exposure lines included in the image sensor appears according to a change in luminance of the subject, and obtaining a bright line image including a plurality of bright lines. The method further includes obtaining identification information of the subject, by demodulating data specified by a pattern of the plurality of bright lines included in the obtained bright line image, selecting service information associated with the identification information, and presenting the service information to a user of the terminal device.
    Type: Grant
    Filed: April 29, 2015
    Date of Patent: October 4, 2016
    Assignee: PANASONIC INTELLECTUAL PROPERTY CORPORATION OF AMERICA
    Inventors: Mitsuaki Oshima, Koji Nakanishi, Hideki Aoyama, Ikuo Fuchigami, Tsutomu Mukai, Hidehiko Shin, Yosuke Matsushita, Shigehiro Iida, Kazunori Yamada
  • Patent number: 9461740
    Abstract: An LED light and communication system includes one or more optical transceivers that have a light support having a plurality of light emitting diodes and one or more photodetectors attached thereto, and a processor in communication with the light emitting diodes and the one or more photodetectors. The processor is constructed and arranged to generate a communication signal. The one or more optical transceivers are engaged to a lighting fixture within a building. The one or more optical transceivers are constructed and arranged to communicate with a name tag.
    Type: Grant
    Filed: May 28, 2014
    Date of Patent: October 4, 2016
    Assignee: Federal Law Enforcement Development Services, Inc.
    Inventor: John C. Pederson