Patents Examined by Daniel L Murphy
  • Patent number: 10215016
    Abstract: A distributed acoustic sensing cable package having a polymer composite extruded over an optical waveguide to encase the waveguide and to form a crystalline matrix layer acoustically coupled to the waveguide. The crystalline matrix includes reinforcement fibers to further enhance transmission of a cable strain to the optical waveguide. During manufacture of the cable, the polymer composite may be extruded over the optical waveguide and subsequently subjected to heat treatment to increase the crystallinity of the polymer composite and increase the elastic modulus. Both axial and radial strain fields are effectively interact with cased fiber waveguide for producing measurable phase shift signal for distributed acoustic noise detection.
    Type: Grant
    Filed: March 10, 2015
    Date of Patent: February 26, 2019
    Assignee: Halliburton Energy Services, Inc.
    Inventors: Hua Xia, Avinash V. Taware, David A. Barfoot
  • Patent number: 10209382
    Abstract: A system (1) for attaching a plurality of seismic nodes (110, 110a) along a main carrier rope (101). The main carrier rope is made of steel or synthetic fiber, and comprises no power or communication lines. The system has a length measuring device (210) for providing a measured length (Lm) of deployed main carrier rope (101); a data source (220, 230, 240) for providing positioning data affecting the rope position of each seismic node (110, 110a) on the main carrier rope (101); a control unit (200) for providing an attachment command whenever the measured length (Lm) corresponds to a rope position of a seismic node (110, 110a) computed from the positioning data; and a node attaching unit (100) for attaching a seismic node (110, 110a) to the main carrier rope (101) in response to the attachment command. The system is capable of attaching nodes (110) with different node spacing between some or all nodes along the main carrier rope (101).
    Type: Grant
    Filed: March 3, 2015
    Date of Patent: February 19, 2019
    Assignee: SEAFLOOR GEOPHYSICAL SOLUTIONS AS
    Inventors: Ian McMillan, Michael Russell, Thomas Hills, Terje Nalum
  • Patent number: 10197669
    Abstract: Methods and systems for performing three dimensional LIDAR measurements with different illumination intensity patterns are described herein. Repetitive sequences of measurement pulses each having different illumination intensity patterns are emitted from a LIDAR system. One or more pulses of each repetitive sequence have a different illumination intensity than another pulse within the sequence. The illumination intensity patterns are varied to reduce total energy consumption and heat generated by the LIDAR system. In some examples, the illumination intensity pattern is varied based on the orientation of the LIDAR device. In some examples, the illumination intensity pattern is varied based on the distance between a detected object and the LIDAR device. In some examples, the illumination intensity pattern is varied based on the presence of an object detected by the LIDAR device or another imaging system.
    Type: Grant
    Filed: March 20, 2017
    Date of Patent: February 5, 2019
    Assignee: Velodyne Lidar, Inc.
    Inventors: David S. Hall, Pieter J. Kerstens, Yupeng Cui, Mathew Noel Rekow, Stephen S. Nestinger
  • Patent number: 10191169
    Abstract: Seismic node systems can be configured for acquiring seismic sensor data with an array of seismic receivers or nodes deployable in a survey area, each receiver or node having a seismic sensor for acquiring the seismic sensor data, a clock, a controller and local memory. The seismic sensor can data characterize a seismic wavefield proximate the seismic receivers in the survey area. Quality control data can be generated based on the seismic sensor data and associated timing information provided by the respective clock, and incorporated into a seismic data flow for recording in the local memory.
    Type: Grant
    Filed: May 23, 2017
    Date of Patent: January 29, 2019
    Assignee: ION Geophysical Corporation
    Inventor: David A. Céspedes
  • Patent number: 10191171
    Abstract: A seismic apparatus includes one or more seismic cable systems configured to acquire seismic data, each seismic cable system having one or more of a cable jacket, a reservoir for a ballast fluid or other ballast medium, and an actuator or other transfer mechanism configured to transfer the ballast fluid between the reservoir and the seismic cable system during acquisition of the seismic data, e.g., where the ballast fluid is transferred to the seismic cable system within the cable jacket. A controller can be configured to adjust a buoyancy of the seismic cable system responsive to the transfer of the ballast fluid, e.g., where the internal volume expands or contract based on the fluid transfer.
    Type: Grant
    Filed: February 27, 2017
    Date of Patent: January 29, 2019
    Assignee: ION Geophysical Corporation
    Inventor: André W. Olivier
  • Patent number: 10156651
    Abstract: Methods and systems to remove source wavefield and source ghost effects from marine seismic data are described. The methods and systems may be used to substantially remove source wavefield and source ghost effects from marine seismic data collected in rough weather conditions.
    Type: Grant
    Filed: April 21, 2016
    Date of Patent: December 18, 2018
    Assignee: PGS Geophysical AS
    Inventor: Walter Söllner
  • Patent number: 10156652
    Abstract: An analysis is proved to determine a candidate line for at least one vessel to traverse in a 3D seismic survey to achieve desired coverage either along a planned line or a new infill line. The analysis can also be used in a 4-D survey to determine the coverage of a candidate line relative to the baseline survey previously conducted. The analysis determines a coverage footprint of the common midpoint lines, at given offsets, so the user or automated system can select a candidate line to achieve the best coverage.
    Type: Grant
    Filed: July 2, 2015
    Date of Patent: December 18, 2018
    Assignee: ION Geophysical Corporation
    Inventors: David Robert Bowman, Michael Bernard Tomlinson, Angus Macgregor Styles
  • Patent number: 10145970
    Abstract: A method for seismic surveying includes deploying a group of vertically sensitive seismic particle motion responsive sensors at each of a plurality of geodetic survey positions. The groups each include at least two sensors spaced apart by a first selected horizontal distance. The groups are separated from each other by a second selected distance larger than the first distance. Signals detected by each of the sensors resulting from actuation of a seismic energy source are recorded. At least one of an in-line and a cross-line component of a gradient of the vertical component of the seismic wavefield is determined at each group location by determining a difference between the signals detected by each sensor in a respective group.
    Type: Grant
    Filed: June 15, 2015
    Date of Patent: December 4, 2018
    Assignee: APACHE CORPORATION
    Inventors: David Monk, Michael S. Bahorich, William N. Goodway
  • Patent number: 10145227
    Abstract: An embodiment in accordance with the present invention includes a method for estimating the permeability of fractured rock formations from the analysis of a slow fluid pressure wave, which is generated by pressurization of a borehole. Wave propagation in the rock is recorded with TFI™. Poroelastic theory is used to estimate the permeability from the measured wave speed. The present invention offers the opportunity of measuring the reservoir-scale permeability of fractured rock, because the method relies on imaging a wave, which propagates through a large rock volume, on the order of kilometers in size. Traditional methods yield permeability for much smaller rock volumes: well logging tools only measure permeability in the vicinity of a borehole. Pressure transient testing accesses larger rock volumes; however, these volumes are much smaller than for the proposed method, particularly in low-permeability rock formations.
    Type: Grant
    Filed: July 29, 2016
    Date of Patent: December 4, 2018
    Assignee: The Johns Hopkins University
    Inventors: Markus Hilpert, Peter Anderson Geiser, Bruce D. Marsh
  • Patent number: 10145728
    Abstract: Described herein is a transceiver circuit for a capacitive micromachined ultrasonic transducer (CMUT), provided with: a transmitter stage, which generates excitation pulses for a first node of the CMUT transducer during a transmitting phase, a second node of the CMUT transducer being coupled to a biasing voltage; a receiver stage that is selectively coupled to the first node during a receiving phase and has an amplification stage; a switching stage that couples the receiver stage to the first node during the receiving phase and decouples the receiver stage from the first node during the transmitting phase. The amplification stage is provided with a charge amplifier that has an input terminal and is biased as a function of a biasing voltage; and the switching stage is coupled to the same biasing voltage thereby minimizing an injection of charge into the input terminal upon switching from the transmitting phase to the receiving phase.
    Type: Grant
    Filed: June 25, 2015
    Date of Patent: December 4, 2018
    Assignee: STMICROELECTRONICS S.R.L.
    Inventors: Antonio Davide Leone, Davide Ugo Ghisu, Fabio Quaglia
  • Patent number: 10145974
    Abstract: A method for detecting hydrocarbons is described. The method includes obtaining seismic data associated with a body of water in a survey region, analyzing the seismic data to identify at least one noise indicator to produce a noise indicator image; and determining seepage locations by comparing the at least one noise indicator image to the seismic data.
    Type: Grant
    Filed: June 30, 2016
    Date of Patent: December 4, 2018
    Assignee: ExxonMobil Upstream Research Company
    Inventors: Scott C. Hornbostel, Homer C. Jones, John Blum
  • Patent number: 10139511
    Abstract: Method and system for acquiring seismic data. The marine seismic acquisition system includes a first vessel that follows an inline direction (X); a first source array (S1) configured to generate first seismic waves; and a second source array (S2) configured to generate second seismic waves. The first and second source arrays are towed by the first vessel along the inline direction (X) and a first inline distance (d) between (i) a first center of source (CS1) of the first source array (S1) and (ii) a second center of source (CS2) of the second source array (S2) is different from zero.
    Type: Grant
    Filed: June 1, 2016
    Date of Patent: November 27, 2018
    Assignee: CGG SERVICES SAS
    Inventor: Thomas Mensch
  • Patent number: 10139488
    Abstract: The present invention provides a new art for grasping a moving direction of an underwater vehicle. In order to grasp the moving direction of the underwater vehicle, a measurement apparatus 2000 is installed in an underwater vehicle 4000. An electromagnetic wave receiving unit 2020 receives an electromagnetic wave signal, which a signal outputting apparatus 3000 outputs with a first frequency, in the water. A sound receiving unit 2040 receives a sound signal, which the signal outputting apparatus 3000 outputs with a second frequency, in the water. A frequency calculating unit 2050 calculates a frequency of the electromagnetic wave signal which the electromagnetic wave receiving unit 2020 receives, and a frequency of the sound signal which the sound receiving unit 2040 receives.
    Type: Grant
    Filed: June 26, 2015
    Date of Patent: November 27, 2018
    Assignee: NEC CORPORATION
    Inventor: Yoshinori Hama
  • Patent number: 10132946
    Abstract: Systems and methods to correct source responses and perform source deghosting of a pressure or particle motion wavefield recorded using near-continuous recording of seismic data along a vessel track with generalize source activation times. The methods and systems receive a near-continuously recorded seismic data and generate a near-continuous wavefield for approximately stationary-receiver locations. Time windows of different temporal lengths are applied to traces of the near-continuous wavefield in approximately stationary-receiver locations in order to compute common-receiver gathers. The common-receiver gathers are corrected source wavefield response and source ghost effects and are combined in weighted sums to generate broadband seismic data.
    Type: Grant
    Filed: March 11, 2015
    Date of Patent: November 20, 2018
    Assignee: PGS Geophysical AS
    Inventors: Stian Hegna, Gregg Parkes
  • Patent number: 10126447
    Abstract: Oilfield and wellbore data may include geophone data (seismic) and airborne surveys such as microseep data, as well as fiber optic measurements collected utilizing a distributed sensing system. Continuous monitoring of various oilfield and wellbore properties, such as temperature, pressure, Bragg gradient, acoustic, and strain, and the like, may generate a large volume of data, possibly spanning into several terabytes. Embodiments of the present invention provide techniques for visualizing a large volume of such measurements taken in an oilfield or wellbore without down-sampling measurement data.
    Type: Grant
    Filed: June 5, 2017
    Date of Patent: November 13, 2018
    Assignee: PETRABYTES CORPORATION
    Inventors: Sashi B. Gunturu, Daniel H. Morgan
  • Patent number: 10126454
    Abstract: Methods and systems for identifying and locating fractures within a wellbore are described herein. One such method includes generating an acoustic wave. At least a first portion of the acoustic wave travels along a wall of the wellbore. The first portion of the acoustic wave interacts with a feature on the wall of the wellbore, such as a fracture, and generates a second acoustic wave. The second acoustic wave is detected to obtain acoustic data. A chevron pattern is identified within the acoustic data and a location for the feature is determined using the identified chevron pattern.
    Type: Grant
    Filed: December 30, 2015
    Date of Patent: November 13, 2018
    Assignee: SCHLUMBERGER TECHNOLOGY CORPORATION
    Inventors: Ralph M. D'Angelo, Kenneth W. Winkler, Christoph Klieber, Mikhail Lemarenko
  • Patent number: 10126452
    Abstract: Marine seismic vibrators in a marine seismic vibrator array for use in a seismic survey are activated to produce a source gradient wavefield to survey a target structure. The seismic survey may comprise a marine seismic survey conducted in a body of water.
    Type: Grant
    Filed: March 19, 2015
    Date of Patent: November 13, 2018
    Assignee: WESTERNGECO L.L.C.
    Inventors: David Fraser Halliday, Jon-Fredrik Hopperstad, Robert Montgomery Laws
  • Patent number: 10126451
    Abstract: A method for obtaining zero-offset and near zero offset seismic data from a marine survey, with separation of direct arrival information and reflectivity information, the method including: modeling a direct arrival estimate at a passive near-field hydrophone array by using a notional source separation on active near-field hydrophone data; generating reflection data for the passive near-field hydrophone array by subtraction of the modeled direct wave from data recorded by the passive near-field hydrophone array; generating near zero-offset reflectivity traces by stacking the reflection data for the passive near-field hydrophone array on a string-by-string basis or on a combination of strings basis.
    Type: Grant
    Filed: February 8, 2017
    Date of Patent: November 13, 2018
    Assignee: ExxonMobil Upstream Research Company
    Inventors: John E. Anderson, Michael W. Norris, Haiyang Wang, Young Ho Cha
  • Patent number: 10120090
    Abstract: Implementations provide identification of rock boundaries and evaluation of rock interval velocities in subterranean zones. Actions can include receiving acoustic signals associated with sounds produced by a well tool implemented to perform a well operation by contacting a portion of a subterranean zone, the acoustic signals being composed of source acoustic signals and reflected acoustic signals produced in response to the source acoustic signals, processing the acoustic signals to determine the source acoustic signals and the reflected acoustic signals and determining properties of the subterranean zone based on the source acoustic signals and the reflected acoustic signals.
    Type: Grant
    Filed: February 13, 2017
    Date of Patent: November 6, 2018
    Assignee: Saudi Arabian Oil Company
    Inventors: Maher I. Almarhoon, Yunlai Yang
  • Patent number: 10120091
    Abstract: Disclosed is a system for surveying the structure beneath the seabed using a sub-bottom profiler. The system can include a survey vessel and a sub-bottom profiler mounted to travel with the survey vessel. The sub-bottom profiler can comprise a transmitter for transmitting pulses at a predetermined period between pulses towards the seabed, and a first receiver and a second receiver for receiving reflections from the seabed of each transmitted pulse. The system can also include that the transmitter and the first and second receivers are mounted along an axis in the direction of travel of the survey vessel and the transmitter is disposed between the first and second receivers and spaced from each of them by a predetermined separation.
    Type: Grant
    Filed: December 11, 2015
    Date of Patent: November 6, 2018
    Assignee: Fugro N.V.
    Inventor: Angus James Stephen Ogilvie