Patents Examined by Daniel Larkin
  • Patent number: 8146404
    Abstract: The exemplary embodiments provide a method, system, and device for identifying chemical species in a sample. According to one embodiment, the method, system, and device may include introducing a sample gas into a differential ion mobility device, ionizing at least a portion of the sample gas to generate at least one ion species, filtering the at least one ion species between a pair of filter electrodes, generating a detection signal in response to the at least one ion species depositing a charge on a collector electrode, and detecting a spectral peak associated with the at least one ion species.
    Type: Grant
    Filed: January 16, 2009
    Date of Patent: April 3, 2012
    Assignee: Chemring Detection Systems, Inc.
    Inventors: Matthew Todd Griffin, John Michael Alfred Petinarides, Paul Joseph Rauch, Jerome Paul Dahl, Robert Francis McAtee
  • Patent number: 8141417
    Abstract: The present invention includes medical fluid injector systems that detect the contents and/or volume of such contents within a syringe of the system. For example, an RF signal from a first antenna of a medical fluid injector may be transmitted through a syringe associated with the medical fluid injector. At least some of the transmitted RF signal may be received by a second antenna of the medical fluid injector. An amount of the RF signal received by the second antenna may be measured to provide information regarding the contents and/or volume of such contents within the syringe.
    Type: Grant
    Filed: August 6, 2008
    Date of Patent: March 27, 2012
    Assignee: Mallinckrodt LLC
    Inventors: Chad M. Gibson, Vernon D. Ortenzi
  • Patent number: 8141440
    Abstract: A closed loop system for obtaining a sample of a fluid from a source of fluid is disclosed, the system including a collection vessel having a fluid chamber disposed therein. A valve assembly is disposed within the collection vessel and adapted to selectively open and close a fluid communication path between the fluid chamber and an associated fluid receptacle. An inlet provides a fluid communication path between the source of fluid and the fluid chamber, and an outlet provides a fluid communication path between the fluid chamber and a fluid recovery system.
    Type: Grant
    Filed: April 26, 2007
    Date of Patent: March 27, 2012
    Assignee: Gammon Technical Products, Inc.
    Inventors: Howard M. Gammon, James H. Gammon
  • Patent number: 8141411
    Abstract: A method for determining a low cylinder pressure condition of a gas chromatograph includes providing gas from the cylinder to an inlet of the gas chromatograph. In particular, the gas is provided at a predetermined inlet pressure that is higher than an inlet pressure that is required for a predetermined gas chromatographic analysis routine. The inlet pressure of the gas being supplied to the inlet is increased, in order to attempt to achieve a predetermined check value. It is then determined if the inlet pressure actually increases to at least the predetermined check value. If it is determined that the inlet pressure of the gas does not increase to at least the predetermined check value, then an indication of a low cylinder pressure condition is provided.
    Type: Grant
    Filed: September 30, 2008
    Date of Patent: March 27, 2012
    Assignee: Thermo Finnigan LLC
    Inventor: Edward B. McCauley
  • Patent number: 8122763
    Abstract: A gas measurement apparatus can comprise a sensor and a processor, in an example. The sensor can measure a pressure condition of a gas tank, in an example. The processor can select at least one light source, the light source can be positioned or be of a distinct color to indicate a corresponding level of gas remaining in the tank when illuminated. The level of gas can be based on the measured pressure. Banks of high intensity LEDs can allow visually discernable colors at a significant distance underwater. A visual beacon mode can be included. An alphanumeric pressure readout mode can be included. A depth sensor can be included.
    Type: Grant
    Filed: October 8, 2008
    Date of Patent: February 28, 2012
    Assignee: Avair, LLC
    Inventors: Ronald Fundak, Gary L. Felske
  • Patent number: 8117895
    Abstract: A multicapillary bundle for use in a gas chromatograph. Each of the capillaries in the bundle is formed using a coating solution containing a stationary phase and a solvent. The capillaries are coated with the stationary phase by reducing pressure at a vacuum end of the capillary and creating a moving interface between the coating solution and a film of the stationary phase deposited on each of the capillaries. The reducing pressure at the vacuum end of the capillary and the temperature of the capillary are controlled to maintain motion of the moving interface away from the vacuum end of the capillary. Maintained movement of the interface prevents recoating of the stationary phase. A heating wire and capillaries are embedded in a thermally conductive polymer to create a highly responsive method of heating the multicapillary column. An electronic control device controls the feedback temperature of the multicapillary column using the heating wire.
    Type: Grant
    Filed: June 12, 2008
    Date of Patent: February 21, 2012
    Assignee: Northern Alberta Institute of Technology
    Inventors: Ron W. Currie, David Christiansen
  • Patent number: 8117896
    Abstract: Apparatus, systems and methods are described for preconcentrators, chemical sensing systems and gas chromatographs. A preconcentrator is described that comprises a hollow enclosure containing a sorbent material. The enclosure may be a capillary tube that can be formed in to a desired shape and that may be heated. Heating may be accomplished by passing an electrical current through the capillary or other hollow enclosure form. The sorbent material can be a liquid, a solid, a porous ceramic material and/or a chemiselective polymer. The sorbent material can be coated to the inner wall of the enclosure. The hollow enclosure may be maintained in an insulated chamber. The preconcentrator acts to concentrate a vapor passed through the preconcentrator to a chemical sensing array that can detect chemicals present in the vapor. A gas passed through the hollow enclosure can provide a chemically concentrated input to a chromatographic column.
    Type: Grant
    Filed: August 9, 2007
    Date of Patent: February 21, 2012
    Assignee: Seacoast Science, Inc.
    Inventors: Jonathan Day Lucas, Manna Leon Warburton, Todd Mlsna, Sanjay Patel, Stephen Terrence Hobson
  • Patent number: 8117900
    Abstract: A conduit is connected to the interstice between an outer and inner wall of a storage tank or the liner thereof and may be used to monitor the integrity of the interstice. The conduit comprises a coupling in fluid communication with the interstice, a tube connected at one end to the coupling and having a length sufficient to extend into a riser pipe of the tank. The conduit may also include a bushing holding the tube apart from the tank and providing for the variable positioning of the tube with respect to the tank. A method of monitoring the integrity of the interstice uses monitoring equipment connected to the conduit.
    Type: Grant
    Filed: July 27, 2009
    Date of Patent: February 21, 2012
    Inventor: David D Russell
  • Patent number: 8113035
    Abstract: Disclosed is a method for detecting hydrogen in steel. According to the method, hydrogen contained in steel is transferred into and preferably concentrated in at least one second material. Representative second materials include metals such as vanadium, niobium, tantalum, and their alloys. Upon transfer to the second material, the hydrogen is detected and preferably quantitatively determined. The data obtained with the method enables conclusions to be drawn about the presence of hydrogen in steel. Preferably, the concentration of hydrogen in steel is quantitatively determined from information obtained about the presence of hydrogen in the second material.
    Type: Grant
    Filed: April 25, 2007
    Date of Patent: February 14, 2012
    Inventors: Reiner Kirchheim, Peter-Joachim Wilbrandt, Jurgen Gegner
  • Patent number: 8109128
    Abstract: A photo acoustic trace gas detector (100) is provided for detecting a concentration of a trace gas in a gas mixture. The detector (100) comprises a light source (101) for producing a light beam and a light modulator (103) for modulating the light beam into a series of light pulses at a chopping frequency for generating sound waves in the gas mixture. The amplitude of the sound waves is a measure of the concentration of the trace gas. The detector (100) further comprises an optical cavity (104a, 104b) with the gas mixture. The optical cavity (104a, 104b) amplifies the light intensity of the light pulses. A transducer (109) converts the sound waves into electrical signals. A feed back loop (110, 111, 113, 114) regulates a ratio of a length of the optical cavity (104a, 104b) and a wavelength of the light beam for amplifying the light intensity of the light pulses in the optical cavity (104a, 104b).
    Type: Grant
    Filed: August 30, 2007
    Date of Patent: February 7, 2012
    Assignee: Koninklijke Philips Electronics N.V.
    Inventors: Jeroen Kalkman, Maarten Marinus Johannes Wilhelm Van Herpen, Hans Willem Van Kesteren
  • Patent number: 8109130
    Abstract: A gas detector and process for detecting a fluorine-containing species in a gas containing same, e.g., an effluent of a semiconductor processing tool undergoing etch cleaning with HF, NF3, etc. The detector in a preferred structural arrangement employs a microelectromechanical system (MEMS)-based device structure and/or a free-standing metal element that functions as a sensing component and optionally as a heat source when elevated temperature sensing is required. The free-standing metal element can be fabricated directly onto a standard chip carrier/device package so that the package becomes a platform of the detector.
    Type: Grant
    Filed: August 7, 2009
    Date of Patent: February 7, 2012
    Assignee: Advanced Technology Materials, Inc.
    Inventors: Frank Dimeo, Jr., Philip S. H. Chen, Jeffrey W. Neuner, James Welch, Michele Stawasz, Thomas H. Baum, Mackenzie E. King, Ing-Shin Chen, Jeffrey F. Roeder
  • Patent number: 8109135
    Abstract: A cantilever assembly (1) comprises a cantilever (10) having a cantilever tip (11). The cantilever is mounted to a rigid support (12,120,121) and is provided on its back side with an area (110) of a high reflectance material having a boundary (111) sloping towards the support (12). The extensions (c, ?c) of the area (110) and of the boundary (111) towards the support fulfil the condition c/?c?1 wherein c denotes the extension of the area (110) of the high reflectance material in the direction towards the support (12), and ?c denotes the extension of the sloped boundary (111) of the area (110) of the high reflectance material in the direction towards the support (12).
    Type: Grant
    Filed: November 4, 2004
    Date of Patent: February 7, 2012
    Assignee: Nano World AG
    Inventors: Hans J. Hug, Bart Hoogenboom, Sascha Martin, Jinling Yang
  • Patent number: 8109127
    Abstract: A device for measurement of entrained and dissolved gas has a first module arranged in relation to a process line for providing a first signal containing information about a sensed entrained air/gas in a fluid or process mixture flowing in the process line at a process line pressure. The device features a combination of a bleed line, a second module and a third module. The bleed line is coupled to the process line for bleeding a portion of the fluid or process mixture from the process line at a bleed line pressure that is lower than the process pressure. The second module is arranged in relation to the bleed line, for providing a second signal containing information about a sensed bleed line entrained air/gas in the fluid or process mixture flowing in the bleed line.
    Type: Grant
    Filed: June 30, 2009
    Date of Patent: February 7, 2012
    Assignee: CiDRA Corporate Services, Inc.
    Inventors: Daniel L. Gysling, Douglas H. Loose
  • Patent number: 8104326
    Abstract: A gas chromatography system comprising a sample introduction device, an oven coupled to the sample introduction device and a detector coupled to the oven is disclosed. In certain examples, the oven may be configured to receive a chromatography column in a space in the oven. In some examples, the oven may be constructed and arranged to provide a substantially constant temperature to the space during an analysis stage of the gas chromatography system.
    Type: Grant
    Filed: August 20, 2007
    Date of Patent: January 31, 2012
    Assignee: PerkinElmer LAS, Inc.
    Inventors: Andrew Tipler, James Botelho, Avinash Dalmia, Michael J. Rafa, John Vanderhoef, Paul Schallis, Neal Green, David J. Scott, John McCaffrey, Paul St. Cyr, E. Joel McCorkle, Guiseppe Coppola
  • Patent number: 8104332
    Abstract: To provide a probe 1 for use in a cantilever 2 of an scanning probe microscope (SPM) manufacturable in a simple manufacturing process and usable while allowing full use of the properties of single-crystalline material and a cantilever 2 using that probe. A probe 1 disposed at the tip of beam part 2a of a cantilever 2 used for an SPM, wherein the probe 1 comprises a needle-like part 1a having a length of not less than 10 ?m or and a flat plate part 1b having a face contacting a beam part of the cantilever, the needle-like part 1a and the flat plate part 1b are integrally formed with a single-crystalline material, and at least one side face of the flat plate part 1b contains a flat surface 1c in order to indicate the crystal orientation of the single-crystalline material.
    Type: Grant
    Filed: July 15, 2010
    Date of Patent: January 31, 2012
    Assignee: Namiki Seimitsu Houseki Kabushiki Kaisha
    Inventors: Kouji Koyama, Toshiro Kotaki, Kazuhiko Sunagawa
  • Patent number: 8104330
    Abstract: In order to obtain a temperature gradient elution method which is rapid and accurate, a mobile phase (1) is supplied through two mobile-phase flow channels (2a) and (2b), mixed together, and introduced into the column (15) while the column (15) is made adiabatic. In this operation, the temperature of the mobile phase in one mobile-phase flow channel, i.e., the channel (2a), is regulated to a constant temperature higher than the upper limit of the target temperature range to be obtained in the column (15), while the temperature of the mobile phase in the other mobile-phase flow channel, i.e., the channel (2b), is regulated to a constant temperature lower than the lower limit of the target temperature range in the column (15). By controlling the flow rates in the two mobile-phase flow channels (2a) and (2b), the proportion in which these mobile-phase portions are mixed is changed with time to thereby change the temperature of the mobile phase in the column (15) with time.
    Type: Grant
    Filed: February 9, 2006
    Date of Patent: January 31, 2012
    Assignee: Shimadzu Corporation
    Inventors: Morimasa Hayashi, Yoshihiro Hayakawa
  • Patent number: 8099995
    Abstract: An apparatus and a method of making a measurement using the same. The apparatus includes a channel through which a fluid flows, a detector, and a choked flow channel. The detector measures a property of the fluid by generating a signal that depends on that property. The signal generated also depends on a pressure of the fluid in the detector. The choked flow channel receives the fluid at a first pressure after the fluid has been measured by the detector, and then transmits the fluid to a downstream location at a second pressure. The fluid reaches a supersonic velocity at one point in the choked flow channel. The choked flow channel may include a convergent-divergent nozzle or an orifice in a structure located in the choked flow channel.
    Type: Grant
    Filed: December 16, 2008
    Date of Patent: January 24, 2012
    Assignee: Agilent Technologies, Inc.
    Inventor: Phillip W. Barth
  • Patent number: 8099997
    Abstract: A gelled composition for pipeline, flowline, pipeline jumper or flowline jumper dewatering or preventing ingress of seawater into open pipeline systems or components during tie-in operations of jumpers or additional pipe, valving, manifolds, subsea pipeline architecture or flow conduits operations is disclosed, where the composition includes a concentrated metal formate solution and a hydratable polymer. The gelled formate compositions have improved dewatering properties with 100% or 360 pipe coverage. The gelled formate compositions have can also be reused by breaking and reformulation.
    Type: Grant
    Filed: July 3, 2008
    Date of Patent: January 24, 2012
    Assignee: Weatherford/Lamb, Inc.
    Inventors: Jack Curr, Brian Hallett, Alan Sweeney
  • Patent number: 8096165
    Abstract: A spectrophone assembly comprises a single detector chamber, a plurality of lasers, a gas inlet for supplying a gas sample to the single detector chamber, and at least one microphone. The detector chamber has an internal geometry arranged to be simultaneously acoustically resonant at a plurality of different resonant frequencies. Each laser operates at a different wavelength and is positioned to emit radiation into the single detector chamber, and is operable to emit radiation that is amplitude modulated at a frequency rate corresponding to a particular resonant frequency different from the resonant frequency of each other laser, simultaneously with each other laser. The microphone(s) are positioned in the single detector chamber so that each microphone is located at or near a maximum of a corresponding acoustic resonance defined by the internal geometry of the detector chamber.
    Type: Grant
    Filed: December 2, 2009
    Date of Patent: January 17, 2012
    Inventor: Robert A. Crane
  • Patent number: 8091422
    Abstract: A gas measurement apparatus can comprise a sensor and a processor, in an example. The sensor can measure a pressure condition of a gas tank, in an example. The processor can select at least one light source, the light source can be positioned or of a distinct color to indicate a corresponding level of gas remaining in the tank when illuminated. The level of gas can be based on the measured pressure.
    Type: Grant
    Filed: June 27, 2008
    Date of Patent: January 10, 2012
    Assignee: Avair, LLC
    Inventors: Gary L. Felske, Chris E. Berg