Patents Examined by Daniel Petkovsek
  • Patent number: 10935725
    Abstract: A fusion splicing device is disclosed that includes a connector that fusion splices a pair of optical fibers and a glass clamp that clamps a glass part that has been removed of a coating of the optical fiber, where the glass clamp is provided at an outer side of the connector. The fusion splicing device further includes a coating clamp that clamps at least a part of the coating of the optical fiber and is provided at an outer side of the glass clamp. The fusion splicing device also includes a wind protector cover that covers the connector, the glass clamp, and the coating clamp. Additionally, the fusion splicing device includes a heater that heats a protection sleeve covered on a fusion splice point of the optical fibers that have been fusion spliced with the connector and an aligner that aligns fingertips holding the optical fiber.
    Type: Grant
    Filed: May 28, 2018
    Date of Patent: March 2, 2021
    Assignee: FUJIKURA LTD.
    Inventors: Ryo Hasegawa, Yoshiharu Kanda
  • Patent number: 10928599
    Abstract: The present invention relates to an optical sub-assembly for an optoelectronic module (M), designed to provide conversion of an electrical signal from a main electronic board into an optical signal or vice-versa. It comprises an alignment ring which allows the mechanical sub-assembly to be mechanically aligned and to be centered in a passive manner directly upon installation and hence the optical axis of the optoelectronic component to be readily aligned with the axis of the fiber optic ferrule and hence with the optical fiber extended by a complementary ferrule which is accommodated facing it in the holding cage.
    Type: Grant
    Filed: May 8, 2019
    Date of Patent: February 23, 2021
    Assignee: RADIALL
    Inventors: Rémy Schwerzig, François Quentel, Christian Claudepierre
  • Patent number: 10921682
    Abstract: A low propagation loss and loose fabrication tolerance waveguide for a photonic integrated circuit (PIC) device may be realized by using a weak optical confinement to the optical mode, through designing a waveguide of single or double thin strips with high aspect ratio as waveguide core. To introduce a modulation functionality on this type of PIC device, a thin-film electrooptic material may be incorporated to form a hybrid phase modulating device, where a material that can be processed easily may be used as a device layer and is bonded to, or deposited with, a thin electrooptic film that may otherwise be difficult to fabricate or process. A low insertion loss, compact size and high-efficiency phase modulator on PIC device with this type of weakly confined waveguide is disclosed.
    Type: Grant
    Filed: August 16, 2019
    Date of Patent: February 16, 2021
    Assignee: KVH Industries, Inc.
    Inventor: Liming Wang
  • Patent number: 10921534
    Abstract: An optical module structure includes a substrate, an optical chip and an electrical chip that are fixedly coupled to the substrate. The optical module structure further includes an optical coupling structure fixedly coupled to the optical chip. A side of the optical chip that faces the substrate has a first reference plane, and at least one first alignment mark is provided on the first reference plane. The optical coupling structure has a second reference plane, and at least one second alignment mark is provided on the second reference plane. The first reference plane is aligned with the second reference plane, and the first alignment mark is aligned with the second alignment mark.
    Type: Grant
    Filed: November 22, 2019
    Date of Patent: February 16, 2021
    Assignee: HUAWEI TECHNOLOGIES CO., LTD.
    Inventors: Zhen Dong, Jun Liu, Li Zeng, Qing Zhao, Xiaolu Song
  • Patent number: 10921535
    Abstract: An optical sub-assembly comprising a filtering optical module, a light emitting module having a light emitting device (LED), at least a light receiving module, at least one wavelength filter, a fibre optic connector and cable having a fiber optic, and a telescopic-shaped core cylinder module having at least two tapered diameter core portions and at least a gel coating layer over an inner surface thereof is provided. A first optical signal of the light emitting device is directed to the tapered diameter core portions, the at least one wavelength filter, and onto the fibre optic. The telescopic-shaped core cylinder module is configured to perform isolation on optical signals via the tapered diameter core portions, taperedly shrinking the area for reflected light to impinge on the LED, and the at least a gel coating layer absorbing wavelengths of the optical signals reflected in and to the tapered diameter core portions.
    Type: Grant
    Filed: December 1, 2019
    Date of Patent: February 16, 2021
    Assignee: EZconn Corporation
    Inventor: Chin tsung Wu
  • Patent number: 10915002
    Abstract: Systems and methods are described herein for an optical beam-steering device that includes an optical transmitter and/or receiver to transmit and/or receive optical radiation from an optically reflective surface. An array of adjustable dielectric resonator elements is arranged on the surface with inter-element spacings less than an optical operating wavelength. A controller applies a pattern of voltage differentials to the adjustable dielectric resonator elements. The pattern of voltage differentials corresponds to a sub-wavelength reflection phase pattern for reflecting the optical electromagnetic radiation. One embodiment of a dielectric resonator element includes first and second dielectric members extending from the surface. The dielectric resonator elements are spaced from one another to form a gap or channel therebetween. A voltage-controlled adjustable refractive index material is disposed within the gap.
    Type: Grant
    Filed: February 20, 2018
    Date of Patent: February 9, 2021
    Assignee: Elwha LLC
    Inventor: Gleb M Akselrod
  • Patent number: 10908353
    Abstract: An optical fiber is made of silica-based glass and includes a core, a first cladding that surrounds the core and that has a refractive index lower than a refractive index of the core; and a second cladding that surrounds the first cladding and that has a refractive index lower than the refractive index of the core and higher than the refractive index of the first cladding. At least a part of the first cladding contains a photosensitive material whose refractive index increases by irradiation with light having a specific wavelength. A difference ?n between a refractive index of a portion of the first cladding, the portion being nearest to the core, and the refractive index of the core is in a range of 0.25% to 0.30%. The radius ra of the core is larger than 4.3 ?m and smaller than or equal to 5.0 ?m.
    Type: Grant
    Filed: November 16, 2018
    Date of Patent: February 2, 2021
    Assignee: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Shigehiro Nagano, Manabu Shiozaki, Jun Kinugasa, Takemi Hasegawa
  • Patent number: 10901246
    Abstract: An optical phase shifter according to an embodiment for achieving the object of the present disclosure includes a first semiconductor layer formed on a substrate, a second semiconductor layer having opposite polarity to the first semiconductor layer, an insulating layer formed between the first semiconductor layer and the second semiconductor layer, and including ferroelectrics, a first electrode connected to the first semiconductor layer, and a second electrode connected to the second semiconductor layer. According to an embodiment, the introduction of ferroelectric materials to a semiconductor-insulator-semiconductor (SIS) optical phase shifter brings about improvement in charge collection efficiency resulting from the negative capacitance effect, thereby achieving higher phase modulation efficiency and lower power consumption. Additionally, it is possible to realize a new structure of optical switch or modulator device through design changes of the type of ferroelectrics and the structural variables.
    Type: Grant
    Filed: August 1, 2019
    Date of Patent: January 26, 2021
    Assignee: KOREA INSTITUTE OF SCIENCE AND TECHNOLOGY
    Inventors: Jae-Hoon Han, Sanghyeon Kim, Pavlo Bidenko, Subin Lee, Jin-Dong Song
  • Patent number: 10901295
    Abstract: The present invention extends the resolution capability for shaping optical pulses on laser systems from the current state of the art resolution of ˜250 ps to ˜1 ps by utilizing a hybrid of EOM and spectral shaping technologies. In one embodiment, a short pulse derived from a mode-locked laser oscillator is dispersed using a dispersive stretcher to about 250 ps, providing a linear mapping of spectrum to time. A typical spectral shaper is used to directly write the desired temporal pattern in the spectral domain to produce a crudely patterned waveform that may also suffer from chirp. The chirp is removed by a process known as difference frequency generation by mixing it with a pulse derived from an equally chirped frequency-doubled pump in an optical parametric amplifier. The pattern is then focused in time, which is accomplished in one embodiment by propagating the pattern through a dispersive element.
    Type: Grant
    Filed: March 10, 2017
    Date of Patent: January 26, 2021
    Assignee: Lawrence Livermore National Security, LLC
    Inventors: John E Heebner, Bedros Afeyan
  • Patent number: 10901165
    Abstract: The present invention relates to padded optic fiber ribbons for dry optic fiber cables. The dry padded optic fiber ribbons include a plurality of optic fiber ribbons stacked on top of each other having a cross-sectionally rectangular shape. In addition, the dry padded optic fiber ribbons include a plurality of dry paddings. Each dry padding of the plurality of dry paddings has an inner side and an outer side. Further, the dry padded optic fiber ribbons include at least one tape wrapping around the plurality of dry paddings.
    Type: Grant
    Filed: October 31, 2018
    Date of Patent: January 26, 2021
    Assignee: STERLiTE TECHNOLOGiES LiMiTED
    Inventors: Seldon Benjamin, Sravan Kumar, Kishore Sahoo
  • Patent number: 10901161
    Abstract: An optical power transfer device with an embedded active cooling chip is disclosed. The device includes a cooling chip made of a semiconductor material, and a first subassembly and a second subassembly mounted on the cooling chip. The cooling chip comprises at least one metallization layer on a portion of a first surface of the cooling chip, at least one inlet through a second surface of the cooling chip, wherein the second surface is opposite to the first surface, at least one outlet through the second surface and one or more micro-channels extending between and fluidly coupled to the at least one inlet and the at least one outlet. A cooling fluid flows through the one or more micro-channels. The first subassembly is mounted on the at least one metallization layer and comprises a laser. The second subassembly comprises a phototransducer configured to receive a laser beam from the laser.
    Type: Grant
    Filed: September 14, 2018
    Date of Patent: January 26, 2021
    Assignees: TOYOTA MOTOR ENGINEERING & MANUFACTURING NORTH AMERICA, INC., UNIVERSITY OF OTTAWA, BROADCOM INC.
    Inventors: Ercan M. Dede, Christopher Valdivia, Matthew Wilkins, Karin Hinzer, Philippe-Olivier Provost, Denis Masson, Simon Fafard
  • Patent number: 10895683
    Abstract: A semiconductor device includes an insulating layer, an optical waveguide formed on the insulating layer, a multilayer wiring layer formed on the insulating layer such that the multilayer wiring layer covers the optical waveguide, and a first inductor formed in the multilayer wiring layer.
    Type: Grant
    Filed: October 14, 2019
    Date of Patent: January 19, 2021
    Assignee: RENESAS ELECTRONICS CORPORATION
    Inventors: Teruhiro Kuwajima, Yasutaka Nakashiba
  • Patent number: 10895765
    Abstract: In a waveguide-type optical modulation element that modulates light by applying radio frequency signals to an electrode, the realization of the additional broadening of the bandwidth by improving the degree of freedom in the design of the electrode is enabled. An optical modulation element, which includes optical waveguides provided in a substrate and electrodes that control light waves propagating through the optical waveguides and modulates light by propagating radio frequency signals to the electrodes, in which the electrodes include conductive layers made of copper or a copper alloy and protective layers made of a material other than copper and a copper alloy.
    Type: Grant
    Filed: March 27, 2018
    Date of Patent: January 19, 2021
    Assignees: SUMITOMO OSAKA CEMENT CO., LTD., TOHOKU UNIVERSITY
    Inventors: Tetsuya Fujino, Masayuki Motoya, Tetsuya Goto
  • Patent number: 10895525
    Abstract: An optical-fiber measurement system includes an optical system that generates light and a spatial optical switch that is coupled to the optical system that processes the light generated by the optical system and generates light at a plurality of spatially distributed optical ports. A respective one of a plurality of optical cores at a first end of a multicore optical fiber is positioned to receive light from a respective one of the plurality of spatially distributed optical ports, where the light generated at the plurality of spatially distributed optical ports propagates through the multicore optical fiber. Distal optics is positioned adjacent to a second end of the multicore optical fiber and is positioned to collect light from a sample of interest so that the collected light from the sample of interest is coupled to the plurality of optical cores in the multicore optical fiber.
    Type: Grant
    Filed: March 19, 2017
    Date of Patent: January 19, 2021
    Inventor: Eric Swanson
  • Patent number: 10884207
    Abstract: An optical connector cable comprising an optical cable, a metal member, and a resin member is disclosed. The optical cable includes an optical fiber extending in a first direction, a tensile strength body provided along the optical fiber, and a jacket surrounding the optical fiber and tensile strength body. The optical fiber and the tensile strength body extend outside from an end of the jacket. The metal member includes a winding structure around which the tensile strength body extending outside from the end of the jacket is wound. The resin member holds the metal member and an extended portion of the optical fiber extended from the end of the jacket. The winding structure of the metal member is embedded in the resin member.
    Type: Grant
    Filed: May 7, 2019
    Date of Patent: January 5, 2021
    Assignee: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Taisuke Nagasaki, Toshihisa Yokochi
  • Patent number: 10877234
    Abstract: A fiber optic multiport having a housing with an enclosure defining an interior of the housing is disclosed. A plurality of ports is coupled to the housing, and includes at least one input port and a plurality of output ports. A plurality of fiber optic adapters is positioned in respective ones of the plurality of ports. The fiber optic adapters are configured to receive and connect optical fibers at an interior and an exterior connection side. A plurality of optical fibers is disposed within the interior of the housing. Each of the plurality of optical fibers is routed to at least one of the fiber optic adapters at the interior connection side. Port connection indicia visibly discernible from the exterior of the multiport are indicative of a connection type accessible via the respective one of the plurality of output ports.
    Type: Grant
    Filed: November 14, 2018
    Date of Patent: December 29, 2020
    Assignee: Corning Optical Communications LLC
    Inventors: Larry Reginald Coaxum, Leydys Deniss De Jesús
  • Patent number: 10877300
    Abstract: There is set forth herein an integrated photonics structure having a waveguide disposed within a dielectric stack of the integrated photonics structure, wherein the integrated photonics structure further includes a field generating electrically conductive structure disposed within the dielectric stack; and a heterogenous structure attached to the integrated photonics structure, the heterogenous structure having field sensitive material that is sensitive to a field generated by the field generating electrically conductive structure.
    Type: Grant
    Filed: April 3, 2019
    Date of Patent: December 29, 2020
    Assignees: THE RESEARCH FOUNDATION FOR THE STATE UNIVERSITY OF NEW YORK, GOVERNMENT OF THE UNITED STATES, AS REPRESENTED BY THE SECRETARY OF THE AIR FORCE, MORTON PHOTONICS INCORPORATED
    Inventors: Douglas Coolbaugh, Douglas La Tulipe, Paul A. Morton, Nicholas G. Usechak
  • Patent number: 10877226
    Abstract: An optical fiber connector assembly comprises at least one connector having a latching arm for coupling to an adapter, and a remote release tab having a protrusion configured to cooperate with the adapter to depress said latching arm when the remote release tab is pulled relative to the adapter. The optical fiber connector assembly may further be configured to have a deformable region at one end of the pull tab operatively connector to the latch arm assembly for releasing the connector from the adapter.
    Type: Grant
    Filed: July 16, 2019
    Date of Patent: December 29, 2020
    Assignee: Senko Advanced Components, Inc.
    Inventors: Siu Kei Ma, Jeffrey Gniadek, Kazuyoshi Takano, Kimman Wong
  • Patent number: 10866486
    Abstract: An optical crystal for converting an input light beam, the crystal having an ingress surface, an egress surface, and a fan-out grating has a fan-out pattern oriented at an offset angle ? in the range of 1° to 45° with respect to a beam entry plane at a beam ingress location.
    Type: Grant
    Filed: August 2, 2019
    Date of Patent: December 15, 2020
    Assignee: QIOPTIQ PHOTONICS GMBH & CO. KG
    Inventors: Frank Mueller, Huw Major
  • Patent number: 10866368
    Abstract: An apparatus for processing a ferrule with an abrasive element. The apparatus includes a first mount to which the ferrule is secured, a second mount to which the abrasive element is secured, and a controller operatively coupled to at least the second mount. The second mount includes a spindle to which the abrasive element is coupled, with the spindle having a central axis about which the spindle is configured to rotate. At least one of the first or second mounts is movable within a plane such that when the ferrule and the abrasive element are brought into contact with each other, the apparatus provides three degrees of freedom of movement for processing the ferrule with the abrasive element. A method of using the apparatus to process a ferrule is also disclosed.
    Type: Grant
    Filed: August 23, 2019
    Date of Patent: December 15, 2020
    Assignee: Corning Incorporated
    Inventor: Cameron John Tovey