Patents Examined by Daniel Petrovsek
  • Patent number: 11754424
    Abstract: A computer-readable, non-transitory medium storing a program that causes a computer to execute a process is provided. The process includes acquiring a backward Rayleigh scattered light from an optical fiber composite overhead ground wire provided along an electrical power transmission line, determining each of spectral densities of each of frequencies of vibration of the optical fiber composite overhead ground wire, on a basis of the backward Rayleigh scattered light, estimating a wind speed of a wind hitting the electrical power transmission line, on a basis of a first spectral density of a first frequency band including a natural frequency of the optical fiber composite overhead ground wire, and estimating a wind direction of the wind, on a basis of a second spectral density of a second frequency band which does not include the natural frequency of the optical fiber composite overhead ground wire.
    Type: Grant
    Filed: June 23, 2022
    Date of Patent: September 12, 2023
    Assignee: FUJITSU LIMITED
    Inventor: Takahiro Arioka
  • Patent number: 9891500
    Abstract: Systems and methods which provide for the generation of optical frequency combs using a microring resonator optical frequency comb generator configuration are described. A microring resonator optical frequency comb generator configuration of embodiments comprises a plurality of fiber loop laser cavities and at least one microring cavity are utilized. For example, an optical frequency comb generator may include a first fiber loop laser cavity, a second fiber loop laser cavity that is symmetrical with the first fiber loop laser cavity, and a microring resonator that is coupled into both of the first and second fiber loop laser cavities. The microring resonator may be configured to provide a high quality factor, Q, value. The microring resonator of embodiments works together with optical bandpass filters and amplifiers in the multiple fiber loops to make the generated optical frequency comb stable and flexible.
    Type: Grant
    Filed: January 5, 2017
    Date of Patent: February 13, 2018
    Assignee: City University of Hong Kong
    Inventors: Sai Tak Chu, Kun Zhu
  • Patent number: 9766402
    Abstract: An add-drop filter for transmitting at least one signal is provided. The add-drop filter includes at least two optical waveguides capable of carrying the at least one signal, and at least one active resonator coupled between the optical waveguides, wherein the at least one active resonator provides gain that counteracts losses for the at least one signal.
    Type: Grant
    Filed: June 11, 2014
    Date of Patent: September 19, 2017
    Assignee: Washington University
    Inventors: Lan Yang, Sahin Kaya Ozdemir, Faraz Monifi
  • Patent number: 8861919
    Abstract: A component for a closure is disclosed herein. The component includes a collar extending around a central axis. The component also includes a first expansion housing positioned outside the collar in a radial direction relative to the central axis. The first expansion housing has an interior region in communication with an interior of the collar. The first expansion housing also includes a first adapter mounting wall defining a plurality of first adapter mounting openings in which a plurality of first fiber optic adapters are mounted. The first fiber optic adapters include first connector ports adapted for receiving connectors from outside the first expansion housing.
    Type: Grant
    Filed: February 16, 2012
    Date of Patent: October 14, 2014
    Assignee: Tyco Electronics Corporation
    Inventors: Eric E. Alston, Daniel B Hangebrauck, Jack Smith
  • Patent number: 8320726
    Abstract: Described are multi-tube fabrication techniques for making an optical fiber that is relatively insensitive to bend loss and alleviates the problem of catastrophic bend loss comprises a core region and a cladding region configured to support and guide the propagation of light in a fundamental transverse mode. The cladding region includes (i) an outer cladding region, (ii) an annular pedestal (or ring) region, (iii) an annular inner trench region, and (iv) an annular outer trench region. The pedestal region and the outer cladding region each have a refractive index relatively close to that of the outer cladding region. In order to suppress HOMs the pedestal region is configured to resonantly couple at least one (unwanted) transverse mode of the core region (other than the fundamental mode) to at least one transverse mode of the pedestal region.
    Type: Grant
    Filed: December 15, 2011
    Date of Patent: November 27, 2012
    Assignee: OFS Fitel, LLC
    Inventors: Peter Ingo Borel, David John DiGiovanni, John Michael Fini, Poul Kristensen