Patents Examined by Daniel S. Larkin
-
Patent number: 11913926Abstract: Various example embodiments described herein relate to a sensor assembly. The sensor assembly includes a substrate and a disk for providing parallel gas flow to a plurality of sensing dies. The substrate defines a plurality of openings and an inlet conduit. The plurality of openings is adapted to receive at least one sensing die of the plurality of sensing dies. The inlet conduit is defined between a first end of the substrate and a second end of the substrate. The first end of the substrate is adapted to receive an inflow of a gas. The disk is adapted to be positioned below the substrate so that a top portion of the disk is exposed to the second end of the inlet conduit and the disk defines a passage for the gas to uniformly flow from the second end to a sensor head of the at least one sensing die.Type: GrantFiled: November 4, 2019Date of Patent: February 27, 2024Assignee: HONEYWELL ANALYTICS INC.Inventors: Changyoung Jung, Jinkwang Cho, Sang Hoon Hur, Jae Hwan Lee
-
Patent number: 11905822Abstract: An online measurement method for temperature stability of production layers in an oil and gas well includes: obtaining a plurality of temperature data at each position point of an optical fiber; according to the temperature data, calculating temperature standard deviations of each position point within a production layer at a plurality of time points; performing probability distribution statistics according to the temperature standard deviations at all position points of the production layer at a same time point, fitting a probability distribution curve according to normal distribution, and obtaining a probability density function; obtaining the temperature standard deviations corresponding to at least one value that integral values of the probability density function at all position points of the production layer at each time point is between (0, 1), generating a standard temperature deviation normal distribution probability time curve of each section of the production layer according to the temperature stanType: GrantFiled: January 4, 2021Date of Patent: February 20, 2024Assignee: GUOXING HUIJIN SHENZHEN TECHNOLOGY CO., LTD.Inventors: Zhihua Ge, Shuai Guan, Chuntao Song, Wuhua Zhou, Yuehua Chen
-
Patent number: 11906398Abstract: There is provided an automated system for preparing tissue samples that comprises one or more microtomes, a hydration system, and a processor, the processor being programmed to initiate facing, by one or more microtomes, of a first tissue block comprising a first tissue sample embedded in an embedding material, and cause the first tissue block to be hydrated by the hydration system for a first predetermined time, and initiate facing, by one or more microtomes, of a second tissue block while the first tissue block is being hydrated, the second tissue block comprising a second tissue sample embedded in an embedding material, and cause the second tissue block to be hydrated by the hydration system for a second predetermined time, and to initiate the one or more microtomes to begin sectioning of the first tissue block while the second tissue block is being hydrated.Type: GrantFiled: July 18, 2022Date of Patent: February 20, 2024Assignee: Clarapath, Inc.Inventors: Baris Yagci, Eric Feinstein, Partha P. Mitra, Janak Sewkarran, Cong Zhang, Robert Shusko
-
Patent number: 11893726Abstract: An installation, for use with a computer, for inspecting pinion gear teeth, the installation comprising: an enclosure, the enclosure including a back, a top, a bottom, sides and a front, which includes an opening, to define an interior; a transparent window, the transparent window separating at least a part of the interior from an ambient environment; at least one door operatively connected to the enclosure and retractably separating the transparent barrier from the ambient environment; a programmable logic controller which is housed in the enclosure behind the transparent window; a thermal imager which is housed in the enclosure behind the transparent window, is directed to the transparent window and is in electronic communication with the programmable logic controller; a visible light camera which is housed in the enclosure behind the transparent window, is directed to the transparent window and is in electronic communication with the programmable logic controller; and an air blade blower which is attachedType: GrantFiled: September 17, 2019Date of Patent: February 6, 2024Inventors: Jason Shumka, Thomas Shumka
-
Patent number: 11885716Abstract: A test method for a semiconductor device comprising a substrate wafer (1), in which an element is formed and a material through which an infrared ray can be transmitted, and a package having an airtight space (7) between a cap wafer (3), which is provided opposite to the substrate wafer (1); and which includes a water applying process in which the semiconductor device is exposed to a high moisture atmosphere and a leak discrimination process in which an infrared ray from the semiconductor device is detected and a leak of the package is discriminated based on absorption of the infrared ray by water molecules.Type: GrantFiled: October 10, 2017Date of Patent: January 30, 2024Assignee: Mitsubishi Electric CorporationInventor: Hajime Sasaki
-
Patent number: 11885789Abstract: A system and method for evaluating soil characteristics. The system and method includes providing one or more soil test kits to a user. The soil tests kits may include ion-exchange resins and may instruct the user to collect a soil sample from his/her growing area, to combine the soil sample with the ion-exchange resins, and to provide the combination to the system for analysis. Other test kits may not include ion-exchange resins and may instruct the user to provide a soil sample from his/her growing area to the system for analysis. The system evaluates the ion-exchange resins and/or the soil samples to identify nutrient levels, pH levels, and other characteristics of the soil. Using the evaluation results, the system provides feedback, recommendations and/or products to the user to improve the soil conditions and to ensure a successful crop, yield, quality, and nutrient density.Type: GrantFiled: December 12, 2022Date of Patent: January 30, 2024Assignee: Predictive Nutrient Solutions Inc.Inventors: Kristopher J. Borgman, Brennan A. Ingram
-
Patent number: 11879819Abstract: Microfabricated particulate matter (PM) monitors and fractionators within the PM monitors are provided. A primary channel of a vertical or out-of-plane fractionator receives air samples, comprising particles of varying sizes, from the external environment. The air samples then pass through a plurality of microfluidic channels, wherein inertial forces are applied within the microfluidic channels to separate the particles by size. The fractionator comprises a horizontal air outlet for particles having a size below a threshold size and a vertical air outlet for particles having a size above a threshold size. Thus, the proportion of PM in the air sample is reduced prior to deposition on a PM monitor. A virtual cyclone may also be provided that comprises a bend positioned at a flow path through a primary channel of the vertical microfabricated fractionator.Type: GrantFiled: November 9, 2017Date of Patent: January 23, 2024Assignee: The Board of Trustees of the University of IllinoisInventors: Igor Paprotny, Dorsa Fahimi, Omid Mahdavipour
-
Patent number: 11879883Abstract: A precious metal source verification system includes a quantity of precious metal being formed into a shape. A quantity of trace elements is imprinted into the shape with the precious metal such that the trace elements are detectible within the shape. The quantity of trace elements defines a signature for the shape. The quantity of trace elements is at least partially destroyed or altered upon melting of the shape wherein the signature is destroyed if the shape is altered. The system provides verification of provenance of the precious metal when the signature is maintained.Type: GrantFiled: August 25, 2022Date of Patent: January 23, 2024Inventor: Samuel Landis
-
Patent number: 11874206Abstract: A device for extracting a molecule of interest from a sample matrix. The device includes a support comprising a support surface; a sealing layer that at least partially coats the support surface; and an extractive phase coating applied to a portion of the sealing layer. The extractive phase coating is adapted to contain the molecule of interest. The sealing layer sufficiently coats the support surface to prevent the support surface from coming in contact with the sample matrix when the extractive phase coating is fully immersed in the sample matrix. Analytical screening devices and methods of manufacture are also disclosed.Type: GrantFiled: November 20, 2020Date of Patent: January 16, 2024Assignee: JP SCIENTIFIC LIMITEDInventors: Janusz B. Pawliszyn, Abir Khaled
-
Patent number: 11867712Abstract: A gas densimeter for monitoring a pressure or density of a gas in a gas chamber with a housing having a first housing chamber and a measuring chamber, a first coupling, via which the measuring chamber can be connected to the gas chamber, at least one reference bellows, which is connected directly or indirectly in particular to a transmission element, and at least one transmitting and/or monitoring unit, which is or can be operatively connected directly or indirectly to the transmission element. In this regard, the measuring chamber has a gas-permeable connection to the gas chamber via the first coupling and the reference bellows forms a reference chamber filled with a constant amount of a reference gas. A surface section covering the reference chamber is provided or reachable at least partially within the first housing chamber or measuring chamber as a measuring surface for the gas from the gas chamber.Type: GrantFiled: September 27, 2019Date of Patent: January 9, 2024Assignee: WIKA Alexander Wiegand SE & CO. KGInventors: Philipp Sennert, Matthias Sausner
-
Patent number: 11867677Abstract: A sensor discriminator for detecting a gaseous substance includes a power source, a discrimination module, a sensor simulator that simulates a metal organic framework under at least one simulation condition, a simulation circuitry electrically coupling the sensor simulator to the power source and the discrimination module, and a discriminator circuitry that electrically couples the power source and the discrimination module to a gas capture probe. The discrimination module compares a discrimination pulse and a simulation pulse from the power source after the discrimination pulse passes through a metal organic framework of the gas capture sensor and the simulation pulse passes through a simulation component of the sensor simulator. The discrimination module causes a discriminator output that includes the comparison of the discrimination pulse to the simulation pulse.Type: GrantFiled: November 18, 2022Date of Patent: January 9, 2024Assignee: Honeywell Federal Manufacturing & Technologies, LLCInventors: Daniel A. Christensen, Ratthatrust Leryoskajai, Nathan S. L. Volkmann
-
Patent number: 11867673Abstract: The present invention relates to method of using spectroscopy for real time measuring of concentration of desired product and using measured data for monitoring and control of chromatography. It develops a method and system for measuring real-time concentration of clarified harvest and that of flow through of loading step of the chromatography and using measured data for determining breakthrough in real-time. The two modes of operation are used viz. first mode (Part A) uses a single near infrared spectroscopy (NIR) flow cell prior to the continuous chromatography column to ensure optimal loading in each cycle based on dynamic binding capacity studies carried out previously with the desired Protein A resin and second mode (Part B) uses two near infrared spectroscopy (NIR) flow cells, one before and one after the column, to detect the breakthrough curve (from 1% breakthrough onwards).Type: GrantFiled: March 20, 2020Date of Patent: January 9, 2024Assignee: Indian Institute of Technology DelhiInventors: Anurag Singh Rathore, Garima Thakur, Vishwanath Hebbi
-
Patent number: 11860070Abstract: At least a method and an apparatus are provided for collecting, processing and/or measuring of volatile organic chemicals (VOCs) in a sample, particularly in a solid sample which needs to be crushed for the VOCs to be released. A solid sample is placed into a reusable vial made of e.g., a material having a crushing strength of at least 4000 pounds per square inch. The reusable vial is capped using an external capping unit. The sample can be crushed directly in same reusable vial with an external crushing pestle placed through the capping unit to release a volatile organic compound contained in the solid sample. The volatile organic compound contained in the solid sample can then be extracted from the same reusable vial for an analysis of the volatile organic compound.Type: GrantFiled: May 19, 2023Date of Patent: January 2, 2024Inventor: James L. Peterson
-
Patent number: 11841354Abstract: A method for displaying gas concentration values on a graphical display of a leak detector comprises detecting a presence of a gas using a gas sensor. A signal is generated by the gas sensor and transmitted from the gas sensor to a processor. The received signal is processed to determine a gas concentration value and a corresponding time stamp. The gas concentration values and corresponding time stamps are displayed graphically as they are determined and newly determined gas concentration values and corresponding time stamps are displayed in relation to previously determined gas concentration values and time stamps in streaming manner.Type: GrantFiled: July 2, 2019Date of Patent: December 12, 2023Assignee: INFICON, INC.Inventor: Elliot Gerard
-
Patent number: 11835507Abstract: Systems and Methods for monitoring characteristics of a water sample taken from a water facility (WF), by using a first light source emitting light at a first wavelength, and an additional light source, emitting light at an additional wavelength which is distinctly different from the first wavelength; for each light source, performing a measurement of the water sample, using an optical sensor outputting updated sensor data and a spectral detector, outputting updated detector data; and determining adjustment properties for adjustment of an analysis model, used for ongoing determination of water characteristics such as the water turbidity level, based on comparison between the measurements for each of the light sources.Type: GrantFiled: February 22, 2022Date of Patent: December 5, 2023Assignee: Maytronics Ltd.Inventors: Shahar Sobol, Alexander Rachman, Hanoch Kislev, Igor Lulko
-
Patent number: 11828685Abstract: Syntactic foams are materials including hollow microspheres distributed throughout a cured polymeric resin. Hollow microspheres within syntactic foams, including collapsible shells that enclose empty cavities, can serve as receptacles to capture environmental constituents upon applied temperature and pressure. An epoxy formulation including of EPON™ 828, HELOXY™ 61, and TETA was combined with hollow glass microspheres with isostatic crush strengths of 300, 3000, and 10,000 psi. Effects of pressure and temperature on the mechanical properties were evaluated via dynamic mechanical analysis. Storage modulus and glass transition temperature depended on formulation. Upon exposure to specific temperature and pressures, the hollow glass spheres embedded within the resin lose mechanical integrity and collapse, resulting in the generation of unencapsulated void spaces, primed to capture embedded liquid.Type: GrantFiled: February 25, 2021Date of Patent: November 28, 2023Assignee: Research Triangle InstituteInventors: Leah Marie Johnson, Nicolas Daniel Huffman
-
Patent number: 11828737Abstract: In a preparative liquid chromatograph, a control device for controlling at least operation of a sample injection part includes a holding part for holding a chromatogram-for-setting created in advance for a sample to be analyzed, and an injection program creating part configured to create an injection program that defines timings at which injection operations are executed based on the chromatogram-for-setting, so that, in the case where the number of injections in a multiple injection mode is set, a peak of a chromatogram of the sample to be analyzed injected in each injection operation does not overlap a peak of a chromatogram of the sample to be analyzed injected in another injection operation.Type: GrantFiled: April 5, 2017Date of Patent: November 28, 2023Assignee: Shimadzu CorporationInventors: Soichiro Tamaoki, Tsutomu Okoba, Takayuki Iriki, Shiori Ueda
-
Patent number: 11823925Abstract: An apparatus includes an instrumented substrate apparatus, a substrate assembly including a bottom and top substrate mechanically coupled, an electronic assembly, a nested enclosure assembly including an outer and inner enclosure wherein the outer enclosure encloses the inner enclosure and the inner enclosure encloses the electronic assembly. An insulating medium between the inner and outer enclosure and a sensor assembly communicatively coupled to the electronic assembly including one or more sensors disposed at one or more locations within the substrate assembly wherein the electronic assembly is configured to receive one or more measurement parameters from the one or more sensors.Type: GrantFiled: October 28, 2019Date of Patent: November 21, 2023Assignee: KLA CorporationInventors: Mei Sun, Earl Jensen, Jing G Zhou, Ran Liu
-
Patent number: 11808655Abstract: A vibration isolation holding device includes a body portion and an abutment member. The abutment member is arranged between the body portion and a bearing housing, and has an abutment surface abutting on the bearing housing, when a cartridge is held. A biasing member is disposed between the abutment member and the body portion. An interval between the body portion and the abutment member is regulated by a first regulating portion to be shorter than a natural length of the biasing member.Type: GrantFiled: September 6, 2018Date of Patent: November 7, 2023Assignee: MITSUBISHI HEAVY INDUSTRIES ENGINE & TURBOCHARGER, LTD.Inventors: Shuichi Miura, Hideo Mori, Takanori Shoji, Yosuke Dammoto
-
Patent number: 11802633Abstract: This invention relates to apparatus for the monitoring of the condition of a pipeline (8) which is provided to carry a liquid therealong and/or a component (4) fitted to and operable in communication with the pipeline. The apparatus including at least one detecting device fitted on, or adjacent to, the component (4) to detect a change in condition of the component (4) and/or pipeline (8).Type: GrantFiled: March 29, 2016Date of Patent: October 31, 2023Assignee: Advanced Engeering Solutions LtdInventor: Malcolm Wayman