Patents Examined by Danielle Henkel
  • Patent number: 8415141
    Abstract: The invention relates to a method for rapid detection of a target nucleic acid amplification product while preventing cross-contamination between target nucleic acid amplification products and avoiding false positives, comprising the steps of: a) leaving the reaction tube unopened after the amplification reaction is finished, so as to prevent the target nucleic acid amplification product from leaking out and resulting in contamination; b) placing the unopened reaction tube inside an enclosed unit, making the target nucleic acid amplification product be transferred to a test strip from the reaction tube in a physically enclosed environment; c) performing detection in a visual read-out manner, and determining the result; d) discarding the enclosed unit in a safety place as a whole without opening it after the detection.
    Type: Grant
    Filed: August 12, 2008
    Date of Patent: April 9, 2013
    Inventors: Qimin You, Lin Hu, Jiayong Gu, Qinhao Yu
  • Patent number: 8383395
    Abstract: The invention intends to provide a cell culture apparatus which is able to realize an adequate culture according to the culture state of cells while alleviating the labor of an operator. The cell culture apparatus includes a culture bag for causing the cells to proliferate, a cell inoculation cassette (or culture bag as an antibody stimulating and proliferation culture vessel) for stimulating the cells by an inducer for the proliferation, a culture medium cassette for storing a culture medium supplied to the culture bag and the cell inoculation cassette, a CCD camera 88 for acquiring images of the cells in the cell inoculation cassette, and an image processing computer and an operation control computer for determining the culture state (proliferation capability and proliferation ability of the cells) of the cells from the images of the cells acquired by the CCD camera, and causing a culture operation to be carried out on the basis of the determination.
    Type: Grant
    Filed: November 1, 2006
    Date of Patent: February 26, 2013
    Assignee: Medinet Co., Ltd.
    Inventors: Norihiko Hata, Hidemasa Jinguji, Atsutaka Noguchi, Shiho Sato, Kazutoshi Sato, Naoko Ariyoshi, Akihiro Hosoi
  • Patent number: 8329456
    Abstract: A stable system for producing liquid products such as ethanol, butanol and other chemicals from syngas components contacts CO or a mixture of CO2 and H2 with a highly porous side of an asymmetric membrane under anaerobic conditions and transferring these components into contact with microorganisms contained within bio-pores of the membrane. The membrane side of the membrane utilizes a dense layer to control hydration of the bio-pores with a liquid phase. The gas feed directly contacts the microorganisms in the bio-pores and maximizes their utilization of the syngas. Metabolic products produced by the microorganisms leave the membrane through the side opposite the entering syngas. This system and method establishes a unitary direction across the membrane for the supply of the primary feed source to the microorganisms and the withdrawal of metabolically produced products. The feed and product flow improves productivity and performance of the microorganism and the membrane.
    Type: Grant
    Filed: February 22, 2008
    Date of Patent: December 11, 2012
    Assignee: Coskata, Inc.
    Inventors: Shih-Perng Tsai, Rathin Datta, Rahul Basu, Seong-Hoon Yoon
  • Patent number: 8318477
    Abstract: A cellular electrophysiological measurement device includes a thin plate and a frame. The thin plate has a first surface with a depression and a second surface with a through-hole. The frame is in contact with an outer periphery on the second surface of thin plate. The thin plate has a laminated structure of at least two layers including a first material layer on the first surface and a second material layer on the second surface. The frame is formed of a third material layer. The structure allows the cellular electrophysiological measurement device to be not so vulnerable to breakage of thin plate and other damages, thereby having high production yield.
    Type: Grant
    Filed: May 31, 2006
    Date of Patent: November 27, 2012
    Assignee: Panasonic Corporation
    Inventors: Masaya Nakatani, Takashi Yoshida, Masatoshi Kojima
  • Patent number: 8309348
    Abstract: A stable method for producing liquid products such as ethanol, propanol, butanol and other chemicals from syngas components that contacts CO or a mixture of CO2 and H2 with a highly porous side of an asymmetric membrane under anaerobic conditions and transfers these components into contact with microorganisms contained within bio-pores of the membrane. A liquid contacting side of the membrane utilizes a dense layer to control hydration of the bio-pores with a liquid phase. The gas feed directly contacts the microorganisms in the bio-pores and maximizes their utilization of the syngas. Metabolic products produced by the microorganisms leave the membrane through the side opposite the entering syngas. This method establishes a unitary direction across the membrane for the supply of the primary feed source to the microorganisms and the withdrawal of metabolically produced products. The feed and product flow improves productivity and performance of the microorganism and the membrane.
    Type: Grant
    Filed: September 22, 2011
    Date of Patent: November 13, 2012
    Assignee: Coskata, Inc.
    Inventors: Shih-Perng Tsai, Rathin Datta, Rahul Basu, Seong-Hoon Yoon
  • Patent number: 8304231
    Abstract: The invention relates to a bioreactor, comprising a reactor vessel (2) with a housing support (20,20a), extending into the vessel interior (14), with a medium seal against the vessel interior (14) with a transparent sensor piece (34,34a) and an indicator tile (38,38a), arranged in the vessel interior (14), in contact with the vessel contents, which may be scanned by a fiber optic which may itself be introduced into the housing support (20,20a) and connected to a display device (24). In order that the reactor may be embodied as a bag, the housing support (20,20a) is arranged on the upper side of the reactor bag and provided with a flange piece (26) tightly sealed to the vessel wall (28). The flange piece is connected to the sensor piece (34,34a) by means of a preferably tubular connector piece (32,23a), whereby the length of the connector piece is such that the sensor piece (34,34a) permanently reaches into the reactant.
    Type: Grant
    Filed: August 10, 2005
    Date of Patent: November 6, 2012
    Assignee: Sartorius Stedim Switzerland AG
    Inventor: Marcel Röll
  • Patent number: 8283159
    Abstract: The invention relates to a fermenter (10) for producing biogas from organic material, having a fermentation chamber (11) with a substantially round basal surface to receive fermentation material; arranged, in the peripheral region of the fermentation chamber, filling means (12) for substrate to be fermented; arranged, above the fermentation chamber, an unpressurized gas store (13) with gas discharging means (14); stirring means (15); a settling chamber (16) with overflow rim; and also pumping means (17) for the continuous or batchwise removal of fermentation material from the fermentation chamber and introduction into the settling chamber.
    Type: Grant
    Filed: October 20, 2006
    Date of Patent: October 9, 2012
    Inventor: Wilhelm Gantefort
  • Patent number: 8263391
    Abstract: The invention relates to a specimen carrier for the study of cell growth, comprising a substrate with a reservoir with a bottom, wherein the reservoir is filled up to a predetermined height of the side wall, which is smaller than the complete height of the reservoir, with a carrier material for cell growth and the side wall of the reservoir is formed such that a predetermined contact angle of the carrier material can be adjusted with respect to the side wall.
    Type: Grant
    Filed: July 19, 2007
    Date of Patent: September 11, 2012
    Assignee: ibidi GmbH
    Inventors: Roman Zantl, Valentin Kahl
  • Patent number: 8257968
    Abstract: The present invention concerns an apparatus (1) for staining tissue samples, said apparatus (1) including a reagent section (2) or reagent containers (3); at least one staining section or tissue samples, a robotic head (22) or robotic element (20) that may move reagent to a predetermined tissue sample, said robotic element (20) being moveable above the reagent and the staining sections, a control element (85) that may manage a staining process, a 2-D optical sensor (86) to detect two-dimensional image data of a relevant property and that can feed the captured image data to the control element (86). By providing the robotic element (20) with a 2-D optical sensor (86), a common image processor may be provided having multiple functions. By using a 2-D optical image processing system, the control system of the apparatus may easily be adapted to read various types of data presentations, just as actual images for sections of the apparatus may be identified in order to assess the condition of the apparatus.
    Type: Grant
    Filed: December 19, 2003
    Date of Patent: September 4, 2012
    Assignee: DAKO Denmark A/S
    Inventors: Doug Sweet, Marc Key, Gordon Feingold, Kristopher S. Buchanan, Bob Lathrop, John Favuzzi
  • Patent number: 8216829
    Abstract: This invention relates to a device intended for the culture of cells or micro-organisms, characterised by the fact that it comprises a chamber (100) composed of a tank (110) and a lid (150), adapted so that when in the closed state, it defines a sealed volume under a controlled pressure, and an assembly (200) designed to be placed inside the chamber (100), while being removable from it when the lid (150) is opened, said assembly comprising (200) a support frame (210) and a plurality of plates (250) carried by the support frame (210), the chamber (100) also comprising means designed to successively sterilise its content, for seeding a culture medium placed in the trays (250) and a means for controlling the atmosphere in the chamber (100), to enable the culture of cells or micro-organisms.
    Type: Grant
    Filed: May 18, 2007
    Date of Patent: July 10, 2012
    Assignee: Centre National de la Recherche Scientifique (CNRS)
    Inventors: Jamal Ouazzani, Sylvie Cortial, Didier Sergent, Philippe Lopes
  • Patent number: 8206975
    Abstract: A method and a microfluidic device are provided to regulate fluid flow by equalization of channel pressures. The fluid flow is regulated by way of valve-actuated channel pressures.
    Type: Grant
    Filed: October 27, 2006
    Date of Patent: June 26, 2012
    Assignee: California Institute of Technology
    Inventors: Xiaoyan Robert Bao, Stephen R. Quake, Melvin I. Simon
  • Patent number: 8192980
    Abstract: A microreactor is shown having an inlet or feed channel, an inlet or feed zone for a flow of fluid, a reaction zone, an outlet zone and an outlet or evacuation channel, the zones and channels being in fluid communication, and at least one compound such as an enzyme capable of producing a biological or biochemical reaction with at least one constituent of the flow of fluid, the compound being attached to the surfaces of the inlet zone, reaction zone, and outlet zone.
    Type: Grant
    Filed: May 16, 2003
    Date of Patent: June 5, 2012
    Assignee: Commissariat a l'Energie Atomique
    Inventors: Philippe Combette, Olivier Constantin, Françoise Vinet, Gilles Marchand
  • Patent number: 8137956
    Abstract: The present invention relates to a forensic test strip and method for the detection of semen. This strip is comprised of a paper element coated with reagents which react to the presence of acid phosphatase (AP), an enzyme found in semen, and is sandwiched between a clear plastic cover and an opaque plastic backing. This assembly is peeled apart, the paper element exposed to a source of semen, and the clear cover replaced. A positive test is characterized by a bright purple color, which easily can be seen through the clear cover. An adhesive backing is provided, which allows an investigator conveniently to affix the test strip directly to a notebook.
    Type: Grant
    Filed: November 14, 2008
    Date of Patent: March 20, 2012
    Inventor: Stephen Patrick Ashburn
  • Patent number: 8133716
    Abstract: The present invention pertains to a method and an apparatus for treating municipal solid waste, and more particularly to a method and an apparatus for treating and recycling municipal solid waste not separately collected, and also for minimizing the amount of final waste to be buried.
    Type: Grant
    Filed: March 20, 2003
    Date of Patent: March 13, 2012
    Assignee: Biocon, Inc.
    Inventor: Dae-Kyun Shin
  • Patent number: 8097451
    Abstract: The present invention provides a modular ethanol production plant constructed of a number of identically sized modules each having a supporting structure main framework to which the components contained in the modules are attached. The plurality of modules includes a fermentation module, a distillation module, a ground grain module, and an optional heating module. Each of the modules are sized to occupy the same approximate space as a standard sized ocean going shipping container. Also, each of the modules has a central walkway including piping and electrical control boxes that are aligned for each connection to the next adjacent module.
    Type: Grant
    Filed: August 3, 2007
    Date of Patent: January 17, 2012
    Inventor: Mark K Gaalswyk
  • Patent number: 8080406
    Abstract: The present invention provides a method of automating the production of ethanol in an economical method yet maximizing the conversion of grains into ethanol in an even greater conversion efficiency with a greatly improved feed value byproduct.
    Type: Grant
    Filed: May 18, 2005
    Date of Patent: December 20, 2011
    Inventor: Mark K. Gaalswyk
  • Patent number: 8062882
    Abstract: A bottom wall of a Petri dish used for capturing a cell is provided with a first through hole and a second through hole. A grove that connects the first through hole and the second through hole is formed on an outer surface of bottom wall. The first through hole, the second through hole, and the grove is covered with a transparent plate member. A plate used for capturing the cell is arranged in the Petri dish above the first through hole. An aspiration tube is connected to the second through hole from inside the Petri dish.
    Type: Grant
    Filed: November 28, 2005
    Date of Patent: November 22, 2011
    Assignee: Fujitsu Limited
    Inventors: Satoru Sakai, Moritoshi Ando
  • Patent number: 8026094
    Abstract: During the light illumination period of a monomer addition cycle in synthesizing an DNA microarray, undesirable reflections of illumination light from various interfaces that the illumination light passes through near the synthesis surface of the substrate may reduce the light-dark contrast, and negatively affect the precision and resolution of the microarray synthesis. The present invention provides an flow cell that reduces the undesired reflections by constructing certain flow cell structures with materials that have similar refractive indexes as that of the solution that is in the oligomer synthesis chamber during the illumination period and/or constructing certain flow cell structures or covering the structures with a layer of a material that has a high extinction coefficient.
    Type: Grant
    Filed: October 27, 2006
    Date of Patent: September 27, 2011
    Assignee: Roche Nimblegen, Inc.
    Inventors: Roland Green, Alan Pitas, Francesco Cerrina
  • Patent number: 8021871
    Abstract: Systems and methods for automatically controlling conditions of a process are disclosed. In one example, a controller is programmed with a sequence of steps and parameters required to carry out a bioreactor process. A sensor system interacts with the bioreactor to receive information related to a condition of the bioreactor and/or receive a sample from the bioreactor, which it analyzes. The sensor system sends data signals related to the information and/or the sample to a controller, which determines a control signal based on the received information. The controller sends the control signal to the sensor system which, based on the control signal, performs an action that affects a condition of the bioreactor or affects the sensor system itself.
    Type: Grant
    Filed: December 21, 2009
    Date of Patent: September 20, 2011
    Assignee: Broadley-James Corporation
    Inventor: Larry Eugene West
  • Patent number: 8017383
    Abstract: A solution temperature control device in a biological cell observing chamber (30) used for the detection of chemotaxis and chemotactic cell separator, comprising a first temperature controller (62) and a second temperature controller (63). The first temperature controller (62) measures the temperature of a solution filled in a pair of wells and a flow passage in the chamber and controls the temperature to a specified temperature, and the second temperature controller (63) measures the temperature of a heating part (64) which heats the chamber (30) from the outside to indirectly heat the solution filled in the pair of wells and the flow passage and controls the temperature to a specified preheat temperature. Since the state and quantity of cells moving from one well to the other through the flow passage while holding the temperature of the solution at a specified temperature can be accurately observed and measured, accuracy for controlling the temperature of the solution can be remarkably increased.
    Type: Grant
    Filed: September 13, 2004
    Date of Patent: September 13, 2011
    Assignee: Hirata Corporation
    Inventors: Kouichi Noguchi, Kazuyuki Matsumura, Takesi Mitsunaga, Shiro Kanegasaki