Patents Examined by Danny Leung
  • Patent number: 9042730
    Abstract: A method for adjusting an optical signal includes determining a polarization dependent loss (PDL) value associated with the optical signal, determining an angle between the optical signal and one or more axes of PDL, determining an amount of nonlinear phase noise due to PDL and nonlinear effects upon the optical signal based upon the PDL value and the angle, determining a phase rotation based upon the amount of nonlinear phase noise, and applying the phase rotation to the optical signal.
    Type: Grant
    Filed: February 8, 2013
    Date of Patent: May 26, 2015
    Assignee: Fujitsu Limited
    Inventors: Olga Vassilieva, Inwoong Kim, Motoyoshi Sekiya
  • Patent number: 9036990
    Abstract: A multi-channel optoelectronic device is configured to establish a redundant status link with a remote device. The optoelectronic device can transmit N transmit optical signals to the remote device over a plurality of transmit channels and receive N receive optical signals from the remote device over a plurality of receive channels. The optoelectronic device includes one or more spare transmit and receive channels. When used with a remote device having spare transmit and receive channels, each device can establish a status link with the other and use the status link to switch out transmit and/or receive channels to identify and permanently switch out the worst transmit and/or receive channels. Alternately, the device can interoperate with a non-status-link enabled remote device by determining that the remote device is not status-link enabled, transitioning to a low transmit power mode, and transmitting and receiving over a plurality of default transmit and receive channels.
    Type: Grant
    Filed: October 13, 2014
    Date of Patent: May 19, 2015
    Assignee: FINISAR CORPORATION
    Inventors: Christopher R. Cole, Lewis B. Aronson, Darin James Douma
  • Patent number: 9037005
    Abstract: In one example, an optical channel monitor includes a tunable filter, a deinterleaver, first and second optical receivers, and a control module. The tunable filter is configured to receive an optical signal having a plurality of channels spaced at a nominal channel spacing. The deinterleaver has an input with an input channel spacing Fi, an even output, and an odd output, the input being connected to an output of the tunable filter. The nominal channel spacing is between about one and two times the input channel spacing Fi. A ?20 dB bandwidth of the tunable filter is between about two and four times the input channel spacing Fi. The first and second optical receivers are coupled to the deinterleaver even and odd outputs, respectively. The control module is coupled to the tunable filter and is configured to tune the tunable filter to a desired center frequency.
    Type: Grant
    Filed: December 9, 2013
    Date of Patent: May 19, 2015
    Assignee: FINISAR CORPORATION
    Inventor: John J. DeAndrea
  • Patent number: 9031419
    Abstract: A fiber optic system includes a transmitter for transmitting high-speed streaming electrical data to a receiver for receiving the high-speed data. In order to transmit multiple channels in the system at high-speeds, an electrical data signal is converted into multiple optical sub-signals. Each of the multiple optical sub-signals are transmitted at the common wavelength on multi-spatial mode media. The receiver receives the multiple optical sub-signals as a multi-spatial mode optical signal and separates the multi-spatial mode optical signal into branch signals having a common wavelength. The receiver mixes each of the branch signals with optical carrier waves having the common wavelength and converts the branch signals into electrical signals. Digital signal processing is used to recover the data sub-signals which are used to recover the original data signal.
    Type: Grant
    Filed: September 28, 2011
    Date of Patent: May 12, 2015
    Assignee: AT&T Intellectual Property I, L.P.
    Inventors: Sheryl Woodward, Martin Birk, Michael Brodsky, Lynn E. Nelson, Xiang Zhou, Mark D. Feuer
  • Patent number: 9020356
    Abstract: A network device may include a polarizing multiplexing transmitter, a polarization maintaining (PM) fiber, and a polarizing demultiplexing receiver. The polarizing multiplexing transmitter may generate an optical signal, split the optical signal into a first and a second split optical signal, and modulate the split optical signals based on electrical signals to form first and second modulated optical signals. The polarizing multiplexing transmitter may polarization multiplex the first and second modulated optical signals to form a polarization multiplexed signal and transmit the polarization multiplexed signal via the PM fiber to the polarizing demultiplexing receiver. The polarizing demultiplexing receiver may polarization demultiplex the polarization multiplexed signal to form the first and second modulated optical signals and directly detect the first and the second split optical signal from the first and second modulated optical signals.
    Type: Grant
    Filed: February 7, 2013
    Date of Patent: April 28, 2015
    Assignee: Verizon Patent and Licensing Inc.
    Inventors: Tiejun J. Xia, Glenn A. Wellbrock
  • Patent number: 9020347
    Abstract: A network is described in which a base optical point-to-point (P2P) network can be reconfigured to a target network topology. This reconfigurable architecture customizes the network topology for different classes of applications to maximize throughput. In particular, the network can function efficiently at high-radix and low-radix traffic patterns. This capability is obtained using configurable electrical circuit switches at each node in the network. These configurable electrical circuit switches can be set so that incoming packets are directly routed to a specified output (either a local destination or an outgoing optical link) without: delay, contention, or buffers. In this way, predefined network topologies can be configured with improved node-to-node bandwidths when compared to the original P2P network by leveraging unused optical links. Furthermore, because the electrical circuit switches can be reconfigured, the network topology can be dynamically reconfigured to suit applications or application phases.
    Type: Grant
    Filed: September 9, 2013
    Date of Patent: April 28, 2015
    Assignee: Oracle International Corporation
    Inventors: Pranay Koka, Herbert D. Schwetman, Jr.
  • Patent number: 9008517
    Abstract: A method of automatically binding first and second devices for RF communication is disclosed. One step of the method involves establishing a secure, non-RF communication mode between the first and second devices. According to another step, first and second communication addresses respectively identifying the first and second devices are exchanged in the secure, non-RF communication mode such that the first and second devices will recognize each other as communication partners. The secure, non-RF communication mode is then terminated and an RF communication mode is established between the first and second devices as a first bound pair.
    Type: Grant
    Filed: February 11, 2013
    Date of Patent: April 14, 2015
    Assignee: Fluke Corporation
    Inventors: Jeffrey C. Hudson, Nathaniel J. Wetzel, Glen Howard Vetter
  • Patent number: 9008512
    Abstract: An Optical Access Network, a Optical Network Unit (ONU) and various methods for exchanging information are provided.
    Type: Grant
    Filed: June 22, 2011
    Date of Patent: April 14, 2015
    Assignees: Technion Research and Development Foundation Ltd., Yissum Research Development Company of the Hebrew University of Jerusalem Ltd
    Inventors: Moshe Nazarathy, Amos Agmon, Dan M. Marom
  • Patent number: 9008507
    Abstract: An example apparatus includes a mode selective detector, a measurement module, a difference calculator and a threshold and alarm module. The mode selective detector detects a plurality of modes of a spatially multiplexed signal. The measurement module measures a parameter for the plurality of modes of the spatially multiplexed signal, wherein the parameter is a power or a signal to noise ratio (SNR). The difference calculator compares the measured parameter among a subset modes and/or among a known set of unperturbed parameters and determines a differential, the subset including at least one mode. The threshold and alarm module sets an alarm indicator when the differential is out of bounds.
    Type: Grant
    Filed: March 31, 2011
    Date of Patent: April 14, 2015
    Assignee: Alcatel Lucent
    Inventor: Peter J. Winzer
  • Patent number: 8983296
    Abstract: An optical modulator combines and inputs a signal light propagating through the optical network and a control light having information concerning the optical network to a nonlinear optical medium. The optical modulator modulates the signal light according to changes in intensity of the control light, in the nonlinear optical medium.
    Type: Grant
    Filed: March 27, 2012
    Date of Patent: March 17, 2015
    Assignee: Fujitsu Limited
    Inventor: Shigeki Watanabe
  • Patent number: 8983298
    Abstract: An optical channel monitor includes: a first optical device to include first, second and third optical ports, light input through the first optical port being led to the second optical port, light input through the second optical port being led at least to the third optical port; a second optical device to include fourth, fifth and sixth optical ports, light input through the fourth optical port being led to the fifth optical port, light input through the fifth optical port being led at least to the sixth optical port; an optical filter to include seventh and eighth optical ports optically connected to the second and fifth optical ports, respectively, a specified wavelength being transmitted between the seventh and eighth optical ports; a first photo detector to detect light output from the sixth optical port; and a second photo detector to detect light output from the third optical port.
    Type: Grant
    Filed: February 11, 2013
    Date of Patent: March 17, 2015
    Assignee: Fujitsu Limited
    Inventor: Norifumi Shukunami
  • Patent number: 8977126
    Abstract: Embodiments enable a network operator to use any (and a single) network management system (NMS) that it desires to manage a network having mixed fiber to the home optical network units (ONUs) and coaxial connected cable modems. For example, embodiments enable a cable company operator to use a DOCSIS (Data Over Cable Service Interface Specification) NMS (which the cable company already uses to manage its DOCSIS network) to manage such mixed network, by a simple addition of a DOCSIS Mediation Layer (DML) module between the NMS and the optical line terminal (OLT). On the other hand, embodiments enable a telephone company operator to use a standard EPON (Ethernet Passive Optical Network) OLT NMS with minor OLT and OAM (Operations, Administration, and Maintenance) protocol modifications to manage the same mixed network.
    Type: Grant
    Filed: June 30, 2011
    Date of Patent: March 10, 2015
    Assignee: Broadcom Corporation
    Inventors: Edward Wayne Boyd, Ernie Bahm, Joel I. Danzig, Rennie Gardner, Lawrence Drew Davis
  • Patent number: 8971723
    Abstract: A method is provided for detecting the skew between parallel light signals generated from a serial data stream. The method can be used with polarization multiplexed signal, as well as with wavelength division multiplexed signals, spatial division multiplexed signals, phase modulated signals, or intensity modulated signals. The method can be used with direct detection schemes as well as with coherent detection schemes. The method is provided with: imprinting dips between a fixed number of transmitted symbols of the parallel signals; detecting an electrical signal related to the dips for each parallel signal; and comparing the electrical signals in delay.
    Type: Grant
    Filed: April 16, 2009
    Date of Patent: March 3, 2015
    Assignee: NEC Corporation
    Inventors: Emmanuel Le Taillandier De Gabory, Kiyoshi Fukuchi
  • Patent number: 8971714
    Abstract: An integrated or monolithic photonic circuit that modulates RF signals onto optical signals and then performs a channelizing filter function according to the RF content. According to an exemplary embodiment, the photonic circuit is employed in an aircraft system that includes a front end, a photonic circuit, an optical connection, and an electronic module at some distant location in the aircraft. RF signals are received by an antenna in the front end, the RF signals are then modulated onto optical signals by a modulator and a laser, the modulated optical signals are filtered by a filter array according to a channelizing filter function, and the modulated and channelized optical signals are then carried over the optical connection to the electronic module. Other options like a wavelength-tunable laser and corresponding feedback feature, as well as ring filters with integrated semiconductor optical amplifiers (SOAs) are also possible.
    Type: Grant
    Filed: September 29, 2011
    Date of Patent: March 3, 2015
    Assignee: Lockheed Martin Corporation
    Inventors: Gregory A. Vawter, Jeff B. Lilley, Anna M. Tauke Pedretti, Rick C. Jones
  • Patent number: 8971713
    Abstract: In some embodiments, an identification and communication system described herein comprises one or more query units and one or more response units, wherein at least one query unit comprises a query beam source operable to emit a query beam and at least one response unit comprises at least one detector comprising an application specific integrated circuit (ASIC) comprising an amplifier operable to amplify the query beam. In some embodiments, a system comprises one or more query units and one or more response units, wherein at least one response unit comprises at least one detector capable of detecting incident radiation having a power of about 100 pW or less. In some embodiments, a system comprises at least one component of a response unit disposed in a first housing mounted to a weapon and at least one component of a query unit disposed in a second housing mounted to the weapon.
    Type: Grant
    Filed: June 30, 2011
    Date of Patent: March 3, 2015
    Assignee: Analysis First LLC
    Inventors: Peter Gerber, Jodi Lasky
  • Patent number: 8965220
    Abstract: A reconfigurable optical add drop multiplexer (ROADM) includes local interfaces at which optical signals of different wavelengths are locally input into the ROADM, and a network interface configured to connect the ROADM to a network from which multiplexed optical signals of different wavelengths are transmitted to the network. In a first configuration, the ROADM is configured to transmit from the network interface to the network multiplexed signals of different wavelengths having a first minimum frequency difference. In a second configuration, the ROADM is configured to transmit from the network interface to the network multiplexed signals of different wavelengths having a second minimum frequency difference. The second minimum frequency difference is greater than the first minimum frequency difference. This arrangement reduces the power of four wave mixing cross products produced when optical signals of three wavelengths are multiplexed and transmitted from the ROADM to NZDSF or DSF fiber types.
    Type: Grant
    Filed: March 7, 2008
    Date of Patent: February 24, 2015
    Assignee: Tellabs Operations, Inc.
    Inventors: Julia Y. Larikova, Richard C. Younce, Mark E. Boduch
  • Patent number: 8953953
    Abstract: In a coherent optical receiver, sufficient demodulation becomes impossible and consequently receiving performance deteriorates if an inter-channel skew arises, therefore, a method for detecting inter-channel skew in a coherent optical receiver according to an exemplary aspect of the invention includes the steps of: outputting a plurality of optical signals separated into a plurality of signal components by making a test light from a test light source interfere with a local light from a local light source; detecting the optical signals and outputting detected electrical signals; quantizing the detected electrical signals and outputting quantized signals; performing a fast Fourier transform process on the quantized signals; and calculating a difference in propagation delay between the plurality of signal components on the basis of a plurality of peak values in the results of performing the fast Fourier transform process.
    Type: Grant
    Filed: November 18, 2013
    Date of Patent: February 10, 2015
    Assignee: NEC Corporation
    Inventors: Junichi Abe, Wakako Yasuda, Kiyoshi Fukuchi
  • Patent number: 8942574
    Abstract: A light receiving device includes: a converter digitalizing an analog signal with a given sampling clock frequency, the analog signal being obtained through a photoelectric conversion of a received optical signal; a plurality of fixed distortion compensators compensating an output signal of the converter for waveform distortion with a fixed compensation amount that is different from each other; a plurality of phase shift detector circuits detecting a sampling phase shift from an output signal of the plurality of the fixed distortion compensators; a phase-adjusting-amount determiner determining a sampling phase adjusting amount with use of an output signal of the plurality of the phase shift detector circuits; and a phase adjusting circuit reducing a phase difference between the sampling clock frequency and the received optical signal based on a determination result of the phase-adjusting-amount determiner.
    Type: Grant
    Filed: November 25, 2013
    Date of Patent: January 27, 2015
    Assignee: Fujitsu Limited
    Inventors: Hisao Nakashima, Takeshi Hoshida
  • Patent number: 8938170
    Abstract: In one aspect, identification and communication systems are described herein. In some embodiments, an identification and communication system comprises one or more query units and one or more response units, wherein at least one query unit is a handheld device. In some embodiments, the handheld device does not comprise a weapon and is not mounted on a weapon. In some embodiments, the handheld device comprises a flashlight. In some embodiments, the handheld device comprises a stylus. In some embodiments, the handheld device comprises a smart device in communication with the stylus. In some embodiments, the handheld device comprises a display screen. In some embodiments, the handheld device comprises a query controller and the display screen is operable to display data provided by the query controller.
    Type: Grant
    Filed: June 30, 2011
    Date of Patent: January 20, 2015
    Assignee: Analysis First LLC
    Inventors: Peter Gerber, Jodi Lasky
  • Patent number: 8938166
    Abstract: In one embodiment, a smart small form-factor pluggable (SSFP) transceiver—compatible with SFP size, power, and interconnection standards—includes an optical transceiver, an electrical connector, a protocol processing engine, and a CPU. The SSFP transceiver is configured for use at a client site having no network interface device (NID). The SSFP transceiver (1) mates to a client's network device at an electrical interface within the network device and (2) connects to a network provider's central office (CO) node via an optical cable at an optical interface. The SSFP transceiver is configured to (1) be powered by the network device, (2) power-up upon mating with the network device, (3) be configured by a remote management agent (RMA) of the network provider for communication with the provider network, (4) respond to/generate Operation, Administration, and Management (OAM) messages from/for the CO node, and (5) provide OAM demarcation functions of a conventional NID.
    Type: Grant
    Filed: December 19, 2012
    Date of Patent: January 20, 2015
    Assignee: Alcatel Lucent
    Inventor: Stéphan Roullot