Patents Examined by Dapinder Singh
  • Patent number: 10428751
    Abstract: Systems and methods for operating an engine that includes one or more fuel injectors are described. The systems and methods may characterize fuel injector operation during a time when injecting fuel may be useful to maintain balance of a catalyst to reduce engine emissions. Further, large or small amounts of fuel may be injected without affecting engine combustion.
    Type: Grant
    Filed: April 20, 2017
    Date of Patent: October 1, 2019
    Assignee: Ford Global Technologies, LLC
    Inventors: Michael James Uhrich, Joseph Norman Ulrey, Ross Dykstra Pursifull
  • Patent number: 10428710
    Abstract: An injector for adding a liquid additive into an exhaust gas treatment apparatus includes at least one nozzle having a spray disc configured to inject the liquid additive into the exhaust gas treatment apparatus. The spray disc has: at least one spray duct, through which flow of the liquid additive can pass, the spray duct having an outlet opening configured to shape a spray jet of the liquid additive. The spray disc has a reinforcing structure arranged downstream of the outlet opening, the reinforcing structure being configured such that it is not wetted by the spray jet.
    Type: Grant
    Filed: April 25, 2016
    Date of Patent: October 1, 2019
    Assignee: Continental Automotive GmbH
    Inventors: Sven Schepers, Rolf Brück
  • Patent number: 10422295
    Abstract: A filter malfunction determination apparatus includes a calculator that calculates, upon determination that a rapid output increase has occurred, an amount of change of a parameter value output from a sensor before and after the rapid output increase. The calculator calculates, based on the calculated amount of change, a correction value for correcting at least one of the parameter value output from the sensor and a malfunction determination threshold. The filter malfunction determination apparatus includes an offset corrector configured to perform, based on the correction value, offset correction of at least one of the parameter value output from the sensor and the malfunction determination threshold after determination that the rapid output increase has occurred.
    Type: Grant
    Filed: June 30, 2016
    Date of Patent: September 24, 2019
    Assignee: DENSO CORPORATION
    Inventors: Masahiro Yamamoto, Manabu Yoshidome, Masayuki Tamura, Go Miyagawa
  • Patent number: 10422266
    Abstract: An exhaust manifold is provided comprising a first log comprising a plurality of inlet segments each having a pair of inlet ports configured to receive exhaust gas from a pair of cylinders of an engine, a second log comprising a plurality of inlet segments each having a pair of inlet ports configured to receive exhaust gas from a pair of cylinders of the engine, and a collector coupled to the logs, the collector comprising a first pair of intake openings configured to receive exhaust gas from the first log, a second pair of intake openings configured to receive exhaust gas from the second log and an outlet configured to route the exhaust gas to a turbocharger, wherein the first pair of intake openings are coupled to a pair of bellows of the first log, each of the pair of bellows being coupled to an inlet segment.
    Type: Grant
    Filed: June 8, 2016
    Date of Patent: September 24, 2019
    Assignee: Cummins Inc.
    Inventors: Philipe F. Saad, Rick Vaughn Lewis, Jr., Johnny Chung-Yin Tsai, Nikhil Jayant Ajotikar
  • Patent number: 10415516
    Abstract: An engine system may include: an engine including a plurality of combustion chambers generating driving torque by burning fuel; an intake line through which fresh air flows into the combustion chambers; an intake manifold for distributing fresh air supplied by the intake line to the combustion chambers; an exhaust line in which exhaust gas exhausted from the combustion chambers flows; a recirculation line branched from the exhaust line and joined to the intake line; a connection pipe disposed at a portion where the recirculation line and the intake line are joined; and a water line connecting the connection pipe and the intake manifold. Condensate water generated at the connection pipe flows in the water line.
    Type: Grant
    Filed: November 17, 2016
    Date of Patent: September 17, 2019
    Assignee: HYUNDAI MOTOR COMPANY
    Inventors: Han Sang Kim, Choo Saeng Choi, Seong Sik Kim, Bonghoon Han, Jungjoo Park, Wootae Kim
  • Patent number: 10415459
    Abstract: A warm-up system for an exhaust gas apparatus includes the exhaust gas apparatus having a turbocharger provided with a turbine, a first exhaust gas control catalyst provided downstream of the turbine, a bypass passage bypassing the turbine, and an adjustment unit adjusting a turbine inflow exhaust gas flow rate and an electronic control unit. The electronic control unit is configured to perform a warm-up control which warms the turbine by controlling the turbine inflow exhaust gas flow rate, by using the adjustment unit, to reach a flow rate higher than zero and lower than the post-warm-up flow rate when an operating state of the internal combustion engine remains constant, such that a warmed state of the first exhaust gas control catalyst is maintained after the first exhaust gas control catalyst is warmed.
    Type: Grant
    Filed: October 10, 2017
    Date of Patent: September 17, 2019
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Takanobu Hosoya, Yasuyuki Irisawa, Hirofumi Kubota, Takashi Tsunooka
  • Patent number: 10415460
    Abstract: A control device for an internal combustion engine, in which vibration of a waste gate valve in a fully closed state and disadvantages caused due to the vibration thereof while the internal combustion engine is running are prevented, and valve opening responsiveness of the waste gate valve can be improved. In a control device for an internal combustion engine, an opening degree of a waste gate valve 14 is controlled by controlling an electrification duty ratio Iduty of the motor 31. In addition, a fully closed period duty ratio IdFC, which is an electrification duty ratio Iduty when the opening degree of the waste gate valve 14 is controlled to be in a fully closed state, is controlled such that the fully closed period duty ratio IdFC becomes smaller when a detected engine speed NE of an internal combustion engine (1) increases (Step 7 in FIG. 5, FIG. 7).
    Type: Grant
    Filed: November 1, 2017
    Date of Patent: September 17, 2019
    Assignee: Honda Motor Co., Ltd.
    Inventor: Atsushi Kurauchi
  • Patent number: 10415565
    Abstract: A vane cell machine is provided comprising a housing having a stator bore with an outer limitation formed by a circumferential wall and two axial end faces (5), a rotor mounted rotatably in said stator bore, a plurality of vanes moveable in radial direction relative to said rotor and sliding along said circumferential wall, and sealing means (12) at least at one of said end faces (5), said sealing means (12) acting on said rotor in axial direction. Such a vane cell machine should have a simple construction. To this end said end face (5) is formed at an end plate (11) of said housing wherein said end plate (11) comprises a recess in which said sealing means (12) are rotated.
    Type: Grant
    Filed: February 8, 2016
    Date of Patent: September 17, 2019
    Assignee: Danfoss A/S
    Inventor: Erik Haugaard
  • Patent number: 10400649
    Abstract: A slope ?t1HC in a linear area of sensor output characteristics for a mixed atmosphere of CO and THC and a slope ?t1NH in the linear area of the sensor output characteristics for NH3 are specified in advance at a time when a time t1 has elapsed since a start of use of an engine. In performing calibration of an NH3 sensor when a time t2 (greater than the time t1) has elapsed, a slope ?t2HC in the linear area of the sensor output characteristics for the mixed atmosphere is specified, a value ?t2NH is calculated from an equation ?t2NH=?t2HC/(?t1HC/?t1NH), and the calculated value ?t2NH is determined as a new slope in the linear area of the sensor output characteristics for an NH3 gas.
    Type: Grant
    Filed: January 5, 2018
    Date of Patent: September 3, 2019
    Assignee: NGK Insulators, Ltd.
    Inventors: Taku Okamoto, Kosuke Monna, Nobuhiko Mori
  • Patent number: 10400772
    Abstract: The present invention relates to a scroll compressor (100).
    Type: Grant
    Filed: July 16, 2014
    Date of Patent: September 3, 2019
    Assignee: Emerson Climate Technologies (Suzhou) Co., Ltd.
    Inventor: Qingfeng Sun
  • Patent number: 10400766
    Abstract: The disclosure allows a gasket to be securely attached to a gasket groove, reduces a time for an operation of attaching the gasket to the gasket groove, and allows differentiation between gaskets of different materials. A gear pump or a motor, including gears which mesh together and form a pair, axes for pivotally supporting the gears, a body having a gear storing chamber internally for placing the gears, a cover for covering the gear storing chamber of the body, is characterized in that a gasket is disposed between the body and the cover, wherein the gasket is insertable to a gasket groove disposed on at least one of the body and the cover, the gasket groove having a shape surrounding the gear storing chamber, and the gasket sticks closely to the gasket groove due to an elastic restoring force when inserted to the gasket groove.
    Type: Grant
    Filed: March 31, 2016
    Date of Patent: September 3, 2019
    Assignee: SHIMADZU CORPORATION
    Inventor: Kazuma Murata
  • Patent number: 10385763
    Abstract: An exhaust system includes an electronic control unit that is configured to control a turbo bypass valve to be in a fully closed state and control an opening degree of a wastegate valve to a first predetermined opening degree during execution of fuel cut control, and maintain the turbo bypass valve in the fully closed state and control an opening degree of the wastegate valve to a second predetermined opening degree when a boost request is not made for the internal combustion engine at the end of the fuel cut control. An area of inflow of bypass gas on an upstream side end surface of the three-way catalyst when the opening degree of the wastegate valve is controlled to the first predetermined opening degree is in a different position from when the opening degree of the wastegate valve is controlled to the second predetermined opening degree.
    Type: Grant
    Filed: February 22, 2018
    Date of Patent: August 20, 2019
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventor: Koichi Kitaura
  • Patent number: 10385749
    Abstract: An exhaust gas control apparatus for an internal combustion engine that can be operated at a lean air-fuel ratio is provided. This exhaust gas control apparatus is equipped with a three-way catalyst, an occlusion reduction NOx catalyst (an NSR catalyst) that is provided upstream of the three-way catalyst, a bypass passage that bypasses the NSR catalyst, a changeover valve that causes exhaust gas to flow through one of the bypass passage and the NSR catalyst, and an electronic control unit. The electronic control unit carries out rich spike, causes exhaust gas to flow through the bypass passage in starting rich spike, and causes exhaust gas to flow through the NSR catalyst after having carried out rich spike for a predetermined period.
    Type: Grant
    Filed: May 31, 2017
    Date of Patent: August 20, 2019
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventor: Hiroyoshi Ueda
  • Patent number: 10378417
    Abstract: Methods and systems are provided for a particulate matter sensor arranged along an exhaust passage. In one example, a particulate matter sensor includes a series of tubes arranged in substantially a U-shape, and where the particulate matter sensor comprises one or more of a rotating element and a temperature sensing element.
    Type: Grant
    Filed: April 4, 2017
    Date of Patent: August 13, 2019
    Assignee: Ford Global Technologies, LLC
    Inventors: Xiaogang Zhang, Jianwen James Yi
  • Patent number: 10378409
    Abstract: An object of the present disclosure is to provide an exhaust gas purification catalyst demonstrating superior storage of NOx contained in exhaust gas. The exhaust gas purification catalyst of the present disclosure has a substrate, a first catalyst layer containing a catalytic metal for NOx reduction and a NOx storage material and formed on the substrate, and a second catalyst layer containing a catalytic metal for NOx oxidation and formed on the first catalyst layer. In the exhaust gas purification catalyst of the present disclosure, the value obtained by dividing the volume of all large pores having a pore volume of 1000 ?m3 or more by the total volume of all medium pores of having a pore volume of 10 ?m3 to 1000 ?m3 in the second catalyst layer is 2.44 or less.
    Type: Grant
    Filed: April 6, 2017
    Date of Patent: August 13, 2019
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Jota Yamauchi, Takahiro Hayashi, Masaya Ibe, Satoru Katoh, Tsuyoshi Hamaguchi, Toshiyuki Tanaka
  • Patent number: 10378404
    Abstract: The present subject matter relates to a method and a treatment system monitor for monitoring an engine exhaust after-treatment system containing more than one Lean NOx Traps (LNT). The method includes receiving an exhaust gas of a desired air-fuel ratio upstream of a respective LNT. The LNT is further regenerated using a richer than stoichiometric exhaust air-fuel ratio and subsequently an air-fuel ratio received downstream of the LNT is evaluated. Further, a working state of a respective LNT is determined based on the monitoring of the air-fuel ratio and oxygen level upstream and downstream of the LNT.
    Type: Grant
    Filed: April 14, 2017
    Date of Patent: August 13, 2019
    Assignee: Ford Global Technologies, LLC
    Inventors: Frederik De Smet, Christoph Boerensen, Frank Linzen
  • Patent number: 10371088
    Abstract: A vehicle is provided with an engine having an exhaust gas system comprising a muffler body containing a valve controlling exhaust gas flow through a tuning tube. The vehicle has an expander, a condenser, a pump, and an evaporator in sequential fluid communication in a closed loop containing a working fluid. The evaporator is positioned within the body and supports the valve and tuning tube therein, with the evaporator in thermal contact with exhaust gas and the working fluid.
    Type: Grant
    Filed: February 15, 2016
    Date of Patent: August 6, 2019
    Assignee: Ford Global Technologies, LLC
    Inventor: Shiguang Zhou
  • Patent number: 10364719
    Abstract: There is provided an exhaust gas purification system including: a NOx storage-reduction catalyst that is provided in an exhaust system of an internal combustion engine to reduce and purify NOx in exhaust gas; a degree of deterioration estimation module 120 for estimating a degree of deterioration of the NOx storage-reduction catalyst; a regeneration control unit 100 for executing a regeneration process in which exhaust gas is enriched so as to restore a NOx storage capacity of the NOx storage-reduction catalyst; an interval setting module for setting a target interval from an end of the regeneration process to a start of the subsequent regeneration process by the regeneration control unit; and an interval target value correction module for correcting the target interval based on the degree of deterioration that is estimated by the degree of deterioration estimation module.
    Type: Grant
    Filed: January 19, 2016
    Date of Patent: July 30, 2019
    Assignee: ISUZU MOTORS LIMITED
    Inventors: Teruo Nakada, Takayuki Sakamoto, Daiji Nagaoka
  • Patent number: 10352232
    Abstract: A turbocharger includes: a shaft provided with a small-diameter portion, and two large-diameter portions formed on two sides of the small-diameter portion; and a semi-floating bearing to rotatably support the shaft. The semi-floating bearing includes a cylindrical body into which the shaft is inserted. An inner peripheral surface of the body includes: two bearing surfaces opposed to the large-diameter portions of the shaft; a non-bearing surface located between the two bearing surfaces, having a larger inner diameter than inner diameters of the bearing surfaces; and an oil passage opened to the non-bearing surface to supply lubricant oil to a gap in a radial direction between the non-bearing surface and the shaft. At least one of the two bearing surfaces extends more in an approaching direction of the two bearing surfaces than does the large-diameter portion opposed in the radial direction to the one bearing surface.
    Type: Grant
    Filed: August 10, 2016
    Date of Patent: July 16, 2019
    Assignee: IHI Corporation
    Inventors: Yutaka Uneura, Yuichi Daito, Hideyuki Kojima, Tomomi Sugiura
  • Patent number: 10344804
    Abstract: A compressor includes a shell, a compression mechanism, a motor assembly, a driveshaft, and a bearing assembly. The driveshaft is drivingly engaged with the motor assembly and the compression mechanism for rotation about an axis and extends from a first end to a second end. The bearing assembly is disposed within the shell and supports the driveshaft for rotation. The bearing assembly includes a bracket, a hub, and a bushing. The bracket is coupled to the shell and includes an aperture. The hub is disposed within the aperture and defines a bore having a radially inwardly extending lip. The bushing includes a first portion and a second portion. The second portion of the bushing includes a plurality of radially extending engagement features. The second portion of the bushing is disposed within the bore of the hub such that the engagement features engage the lip of the hub.
    Type: Grant
    Filed: August 8, 2018
    Date of Patent: July 9, 2019
    Assignee: Emerson Climate Technologies, Inc.
    Inventors: Daniel J. Knoth, Nicholas J. Altstadt