Patents Examined by David C. Payne
  • Patent number: 11159202
    Abstract: Ultra-Wideband (UWB) technology exploits modulated coded impulses over a wide frequency spectrum with very low power over a short distance for digital data transmission. Today's leading edge modulated sinusoidal wave wireless communication standards and systems achieve power efficiencies of 50 nJ/bit employing narrowband signaling schemes and traditional RF transceiver architectures. However, such designs severely limit the achievable energy efficiency, especially at lower data rates such as below 1 Mbps. Further, it is important that peak power consumption is supportable by common battery or energy harvesting technologies and long term power consumption neither leads to limited battery lifetimes or an inability for alternate energy sources to sustain them. Accordingly, it would be beneficial for next generation applications to exploit inventive transceiver structures and communication schemes in order to achieve the sub nJ per bit energy efficiencies required by next generation applications.
    Type: Grant
    Filed: January 30, 2019
    Date of Patent: October 26, 2021
    Assignee: Transfert Plus Societe en Commandite
    Inventors: Frederic Nabki, Dominic Deslandes, Mohammad Taherzadeh-Sani, Michiel Soer
  • Patent number: 11115092
    Abstract: For example, a wireless station may be configured to modulate a plurality of data bit sequences into a plurality of data blocks according to a dual carrier modulation, to map the plurality of data blocks to a plurality of spatial streams according to a space-time diversity scheme, and to transmit a MIMO transmission based on the plurality of spatial streams.
    Type: Grant
    Filed: September 8, 2019
    Date of Patent: September 7, 2021
    Assignee: INTEL CORPORATION
    Inventors: Artyom Lomayev, Alexander Maltsev, Michael Genossar, Carlos Cordeiro
  • Patent number: 11095338
    Abstract: Ultra-Wideband (UWB) technology exploits modulated coded impulses over a wide frequency spectrum with very low power over a short distance for digital data transmission. Today's leading edge modulated sinusoidal wave wireless communication standards and systems achieve power efficiencies of 50 nJ/bit employing narrowband signaling schemes and traditional RF transceiver architectures. However, such designs severely limit the achievable energy efficiency, especially at lower data rates such as below 1 Mbps. Further, it is important that peak power consumption is supportable by common battery or energy harvesting technologies and long term power consumption neither leads to limited battery lifetimes or an inability for alternate energy sources to sustain them. Accordingly, it would be beneficial for next generation applications to exploit inventive transceiver structures and communication schemes in order to achieve the sub nJ per bit energy efficiencies required by next generation applications.
    Type: Grant
    Filed: January 30, 2019
    Date of Patent: August 17, 2021
    Assignee: Transfert Plus Societe en Commandite
    Inventors: Frederic Nabki, Dominic Deslandes, Mohammad Taherzadeh-Sani, Michiel Soer
  • Patent number: 11095466
    Abstract: A packet transmission control method used in a packet transmission circuit is provided that includes the steps outlined below. A packet receiving circuit, processing circuits and a packet sending circuit of the packet transmission circuit are kept in a non-operation status. The packet receiving circuit is woken up to the operation status to receive the packet stream and is restored to the non-operation status. The processing circuits are woken up to an operation status respectively according to an operation order thereof to receive, transmit and process the packet stream within a respective process time period and are restored to the non-operation status after the packet stream is processed. The packet sending circuit is woken up to the operation status to transmit the packet stream processed by the processing circuits to an external device and is restored to the non-operation status after the packet stream is transmitted.
    Type: Grant
    Filed: December 5, 2019
    Date of Patent: August 17, 2021
    Assignee: REALTEK SEMICONDUCTOR CORPORATION
    Inventor: Chung-Chang Lin
  • Patent number: 11082280
    Abstract: System for adjusting a reference constellation for demodulating an optical signal include a coherent electro-optical receiver configured to convert a received optical signal to a plurality of electrical signals, an array of analog-to-digital convertors configured to digitize the plurality of electrical signals, and processor logic. The processor logic is configured to process the digitized plurality of electrical signals using a reference constellation to yield a plurality of decoded signals and a signal quality measurement. The reference constellation includes an inphase component equal to an ideal inphase component plus an inphase offset and a quadrature component equal to an ideal quadrature component plus a quadrature offset. The processor logic is configured to determine an optimal inphase offset and optimal quadrature offset. The processor logic is configured to update the reference constellation using the optimal inphase offset and the optimal quadrature offset.
    Type: Grant
    Filed: October 7, 2019
    Date of Patent: August 3, 2021
    Assignee: Google LLC
    Inventors: Hong Liu, Xiang Zhou
  • Patent number: 11076209
    Abstract: A reduced-complexity optical packet switch which can provide a deterministic guaranteed rate of service to individual traffic flows is described. The switch contains N input ports, M output ports and N*M Virtual Output Queues (VOQs). Packets are associated with a flow f, which arrive an input port and depart on an output port, according to a predetermined routing for the flow. These packets are buffered in a VOQ. The switch can be configured to store several deterministic periodic schedules, which can be managed by an SDN control-plane. A scheduling frame is defined as a set of F consecutive time-slots, where data can be transmitted over connections between input ports and output ports in each time-slot. Each input port can be assigned a first deterministic periodic transmission schedule, which determines which VOQ is selected to transmit, for every time-slot in the scheduling frame.
    Type: Grant
    Filed: February 20, 2020
    Date of Patent: July 27, 2021
    Inventor: Ted H. Szymanski
  • Patent number: 11070248
    Abstract: Ultra-Wideband (UWB) technology exploits modulated coded impulses over a wide frequency spectrum with very low power over a short distance for digital data transmission. Today's leading edge modulated sinusoidal wave wireless communication standards and systems achieve power efficiencies of 50 nJ/bit employing narrowband signaling schemes and traditional RF transceiver architectures. However, such designs severely limit the achievable energy efficiency, especially at lower data rates such as below 1 Mbps. Further, it is important that peak power consumption is supportable by common battery or energy harvesting technologies and long term power consumption neither leads to limited battery lifetimes or an inability for alternate energy sources to sustain them. Accordingly, it would be beneficial for next generation applications to exploit inventive transceiver structures and communication schemes in order to achieve the sub nJ per bit energy efficiencies required by next generation applications.
    Type: Grant
    Filed: January 29, 2019
    Date of Patent: July 20, 2021
    Assignee: Transfert Plus Societe en Commandite
    Inventors: Frederic Nabki, Dominic Deslandes, Mohammad Taherzadeh-Sani, Michiel Soer
  • Patent number: 11057074
    Abstract: A data and power communication cable that provides galvanic isolation between data-signal related circuitry and power-signal related circuitry present at both ends of the cable. The cable includes a first connector configured to mate with a first device to receive data and power signals therefrom; a first galvanic-isolating device configured to generate a galvanic-isolated data signal based on the data signal; a second galvanic-isolating device configured to generate a galvanic-isolated power signal based on the power signal; a second connector configured to mate with a second device to provide the galvanic-isolated data signal and the galvanic-isolated power signal thereto; a first set of communication mediums to route the data signal or the galvanic-isolated data signal from the first connector to the second connector; and a second set of communication mediums to route the power signal or the galvanic-isolated power signal from the first connector to the second connector.
    Type: Grant
    Filed: July 18, 2019
    Date of Patent: July 6, 2021
    Assignee: COSEMI TECHNOLOGIES, INC.
    Inventors: Devang Parekh, David Miller
  • Patent number: 11051030
    Abstract: A system and method for implementing a distributed source coding quantization scheme is provided. In one example, two independent but statistically correlated data sources can be asymmetrically compressed so that one source is compressed at a higher ratio than the other. The resulting signals are transmitted and decoded by a receiver. The highly compressed source can utilize the non-highly compressed source as side information so as to minimize the compression loss associated with the higher compression ratio. A conditional codebook can be created that not only depends on the highly compressed quantizer, but also depends on the quantized symbol received from the non-highly compressed data source.
    Type: Grant
    Filed: January 6, 2020
    Date of Patent: June 29, 2021
    Assignee: The MITRE Corporation
    Inventors: Robert M. Taylor, Jr., Jeffrey P. Woodard
  • Patent number: 11038615
    Abstract: A method of managing an optical communications network comprising a plurality of nodes interconnected by optical sections. The method comprises: identifying one or more pairs of adjacent DL-equipped nodes at which dummy light (DL) hardware is deployed, respective dummy light (DL) hardware being deployed at fewer than the plurality of the nodes of the optical communications network, the respective DL hardware deployed at a particular node configured to supply dummy light to each optical section extending from the particular node, and defining a respective single-section DL path between each identified pair of adjacent DL-equipped nodes; identifying one or more pairs of non-adjacent DL-equipped nodes at which DL hardware is deployed, and defining a respective multi-section DL path between each identified pair of non-adjacent DL-equipped nodes; and causing the deployed DL hardware to supply DL light to each of the single- and the multi-section DL paths.
    Type: Grant
    Filed: April 12, 2019
    Date of Patent: June 15, 2021
    Assignee: HUAWEI TECHNOLOGIES CO., LTD.
    Inventors: Hamid Mehrvar, Christopher Janz
  • Patent number: 11038661
    Abstract: A method and system for managing interference between a set of Light Fidelity (Li-Fi) access points is disclosed. The method includes receiving a plurality of uplink data frames. Each of the plurality of uplink data frames includes a response that includes one of an Acknowledgement (ACK) and a Negative Acknowledgment (NACK) for the associated downlink test frame and a Channel Quality Indication (CQI) for the associated Li-Fi access point. The method further includes detecting presence of the User Equipment (UE) in an interference region of the set of Li-Fi access points. The method includes attaching the UE with a first Li-Fi access point having the highest CQI and scheduling data transmission from the set of Li-Fi access points in a mutually exclusive time slot. The UE accepts data received from the attached Li-Fi access point and drops data received from remaining set of Li-Fi access points.
    Type: Grant
    Filed: January 28, 2020
    Date of Patent: June 15, 2021
    Assignee: Wipro Limited
    Inventors: Subhas Chandra Mondal, Shailesh Prabhu
  • Patent number: 11032056
    Abstract: A first device may provide, to a second device, a first message that includes a first request for a first type of precision time protocol (PTP) message and a second request for a second type of PTP message. The first device may receive, from the second device, a second message based on the first message. The second message may identify whether the first request and the second request are granted. The first device may provide, to the second device, a third message that instructs the second device to provide a first set of messages, associated with the first type of PTP message, and a second set of messages associated with the second type of PTP message. The first device may synchronize a first clock of the first device with a second clock of the second device based on the first set of messages and the second set of messages.
    Type: Grant
    Filed: July 18, 2019
    Date of Patent: June 8, 2021
    Assignee: Juniper Networks, Inc.
    Inventors: Prasanth Kemparaj, Satheesh Kumar S
  • Patent number: 11025474
    Abstract: A periodic phase modulation, having a period shorter than a symbol period, is applied as a source modulation, in addition to a symbol modulation, to signals transmitted between a transmitter and a receiver in a communication network. Symbol value elements can be sent from multiple transmitters (203, 303, 603, 703) to a receiver (607, 207) in the same symbol period can be processed on the basis of the source modulation without destructive interference. In some embodiments, the symbol value elements sent by different transmitters can be combined in the receiver. In some embodiments, symbol value elements sent by different transmitters can be distinguished in the receiver.
    Type: Grant
    Filed: March 12, 2015
    Date of Patent: June 1, 2021
    Assignee: Telefonaktiebolaget LM Ericsson (publ)
    Inventors: Marzio Puleri, Antonella Bogoni, Antonio D'Errico, Francesco Laghezza, Paolo Ghelfi, Teresa Pepe, Filippo Scotti
  • Patent number: 11018773
    Abstract: A cascaded modulator system configured to minimize the extinction ratio (ER) of an optical output of an optical transmitter. The cascaded modulator system includes a pulse position modulation (PPM) source connected to a plurality of serially-connected Mach Zehnder Interferometer (MZIs). A variable time delay ?td may be applied to a negative low voltage differential signal (LVDS) driving a second or later MZI of the plurality of MZIs to eliminate or compensate for one or more non-idealities in an electrical signal.
    Type: Grant
    Filed: October 24, 2019
    Date of Patent: May 25, 2021
    Assignee: United States of America as Represented by the Administrator of National Aeronautics and Space Administration
    Inventors: Nicholas C. Lantz, Jennifer N. Downey, Brian E. Vyhnalek
  • Patent number: 11012161
    Abstract: The transceiver for undersea communication includes both a receiver and a transmitter. The transmitter includes a transmitter digital signal processor for converting a transmitted communication signal into a modulated transmission signal. The transmitter digital signal processor applies a modulation scheme to the transmitted communication signal during its conversion into the modulated transmission signal. The transmitter converts the modulated transmission signal into modulated electrical pulses, which are applied to electrodes to produce a modulated electric field. The receiver includes a receiving antenna formed from samarium nickelate (SmNiO3). Samarium nickelate (SNO) is known to have measurable changes in resistance responsive to changes in applied sub-volt electric potentials when the samarium nickelate is immersed in salt water, such as in an undersea environment.
    Type: Grant
    Filed: June 24, 2020
    Date of Patent: May 18, 2021
    Inventors: Ahmad Fakher Jasem Baghlani, Wadhha S. M. S. Albaho
  • Patent number: 11005563
    Abstract: A test instrument for providing an optics troubleshooting technique of an optical transceiver is disclosed. The test instrument may comprise a processor and a memory, which when executed by the processor, performs the optics troubleshooting technique. The optics troubleshooting technique may include identifying a test signal from the optical transceiver. The optics troubleshooting technique may include determining signal power associated with the signal. The optics troubleshooting technique may further include applying one or more expert mode settings. In some examples, the one or more expert mode settings may be applied in a predefined order until an acceptable BER result is achieved over a predefined test period. In this way, test instrument may determine which of the one or more expert mode settings is responsible for the acceptable BER result.
    Type: Grant
    Filed: May 28, 2019
    Date of Patent: May 11, 2021
    Assignee: VIAVI SOLUTIONS INC.
    Inventors: Sunitha VeerendraKumar Madala, Michael Scott Koller
  • Patent number: 10986425
    Abstract: A network system for a data center is described in which a switch fabric may provide full mesh interconnectivity such that any servers may communicate packet data to any other of the servers using any of a number of parallel data paths. Moreover, according to the techniques described herein, edge-positioned access nodes, optical permutation devices and core switches of the switch fabric may be configured and arranged in a way such that the parallel data paths provide single L2/L3 hop, full mesh interconnections between any pairwise combination of the access nodes, even in massive data centers having tens of thousands of servers. The plurality of optical permutation devices permute communications across the optical ports based on wavelength so as to provide, in some cases, full-mesh optical connectivity between edge-facing ports and core-facing ports.
    Type: Grant
    Filed: September 23, 2019
    Date of Patent: April 20, 2021
    Assignee: Fungible, Inc.
    Inventors: Pradeep Sindhu, Satish D Deo, Deepak Goel, Sunil Mekad
  • Patent number: 10985821
    Abstract: Methods and systems are provided for dynamically adjusting broadcast beam patterns of a wavefront emitted by an antenna array based on the velocities of devices communicatively coupled to the base station associated with the antenna array. The broadcast beam patterns can be adjusted by modifying the broadcast mode or at least one phase, amplitude, or power of the at least one antenna associated with the base station. Adjusting the beam pattern, for example between multiple beams and a single unified beam, based on device types can improve the quality of service for the devices and reduce the processing burden of the base station.
    Type: Grant
    Filed: April 6, 2020
    Date of Patent: April 20, 2021
    Assignee: Sprint Communications Company L.P.
    Inventors: Sharath Somashekar, Nitesh Manchanda, Vanil Parihar, Shruthi Ramakrishna
  • Patent number: 10979167
    Abstract: Methods and apparatus are provided for wavelength control of multiple independent laser sources to reduce relative wavelength drift between the different laser sources. According to some aspects, multiple laser wavelength control is provided using a multi-line source as a wavelength reference. According to other aspects, multiple laser wavelength control is provided using a single wavelength sensing device. The multiple independent laser sources could generate the constituent optical channels of a super-channel. Benefits could include reduced guard band width and increased spectral efficiency within the super-channel.
    Type: Grant
    Filed: October 1, 2018
    Date of Patent: April 13, 2021
    Assignee: HUAWEI TECHNOLOGIES CO., LTD.
    Inventor: Zhiping Jiang
  • Patent number: 10979145
    Abstract: An optical transmitter and an optical transmission method that enable asynchronous operations between transmitters and between the transmitter and a receiver and do not require a synchronization signal line and a synchronization signal generator for connecting between the devices are provided. An optical transmitter includes a generating part generating transmission information including identification information unique to a device and composed of a plurality of bits and generating transmission data with each bit of the generated transmission information in combination of a light-off state and a light-on state, and a transmitting part transmitting a unique beacon signal by controlling the light-on state and the light-off state of a light emitting part in accordance with the generated transmission data.
    Type: Grant
    Filed: March 17, 2020
    Date of Patent: April 13, 2021
    Assignee: Honda Motor Co., Ltd.
    Inventors: Kenro Udono, Yuki Endo, Yoshiki Maezawa