Patents Examined by David C. Thomas
  • Patent number: 11549144
    Abstract: Next Generation DNA sequencing promises to revolutionize clinical medicine and basic research. However, while this technology has the capacity to generate hundreds of billions of nucleotides of DNA sequence in a single experiment, the error rate of approximately 1% results in hundreds of millions of sequencing mistakes. These scattered errors can be tolerated in some applications but become extremely problematic when “deep sequencing” genetically heterogeneous mixtures, such as tumors or mixed microbial populations. To overcome limitations in sequencing accuracy, a method Duplex Consensus Sequencing (DCS) is provided. This approach greatly reduces errors by independently tagging and sequencing each of the two strands of a DNA duplex. As the two strands are complementary, true mutations are found at the same position in both strands. In contrast, PCR or sequencing errors will result in errors in only one strand.
    Type: Grant
    Filed: August 2, 2021
    Date of Patent: January 10, 2023
    Assignee: UNIVERSITY OF WASHINGTON THROUGH ITS CENTER FOR COMMERCIALIZATION
    Inventors: Jesse Salk, Lawrence A. Loeb, Michael Schmitt
  • Patent number: 11549136
    Abstract: Methods of making a three-dimensional matrix of nucleic acids within a cell is provided.
    Type: Grant
    Filed: July 2, 2021
    Date of Patent: January 10, 2023
    Assignee: President and Fellows of Harvard College
    Inventors: George M. Church, Jehyuk Lee, Daniel Levner, Michael Super
  • Patent number: 11542556
    Abstract: Disclosed herein is a novel single nucleotide polymorphism (SNP) in HLA-B*15:02 that can be used as a biomarker for carbamazepine-induced severe adverse skin reactions in Asians. Also provided herein are methods and reagents for assessing the specific SNP, and applying the SNP in predicting an increased risk of carbamazepine-induced severe adverse skin reactions.
    Type: Grant
    Filed: June 9, 2020
    Date of Patent: January 3, 2023
    Assignee: Millennium Health, LLC
    Inventors: Hua Fang, Xiequn Xu, Tanya Moreno, Matthew Dedek, Kulvi Kaur
  • Patent number: 11542546
    Abstract: The inventions cover systems and methods for generation of emulsions having suitable clarity without requiring refractive index matching between emulsion components. Systems can include: a substrate including a set of openings; a reservoir facing the substrate at a first side and containing a sample fluid configured for droplet formation upon interacting with the set of openings of the substrate; and a collecting container facing the substrate at a second side and containing a set of fluid layers configured with a density gradient and suitable immiscibility characteristics. One or more components of the system(s) can support methods for emulsion generation, in relation to enabling interactions between multiple continuous phases and a dispersed droplet phase to generate clear emulsions. Applications of the inventions(s) can include performance of droplet-based digital PCR in an improved manner (e.g., without requiring implementation of correction factors based upon Poisson statistics).
    Type: Grant
    Filed: February 16, 2022
    Date of Patent: January 3, 2023
    Assignee: Enumerix, Inc.
    Inventors: Hei Mun Christina Fan, Eleen Yee Lam Shum, Janice Hoiyi Lai, Stephen P. A. Fodor
  • Patent number: 11542554
    Abstract: Methods of volumetric imaging of a three-dimensional matrix of nucleic acids within a cell is provided. An automated apparatus for sequencing and volumetric imaging of a three-dimensional matrix of nucleic acids is provided.
    Type: Grant
    Filed: August 6, 2021
    Date of Patent: January 3, 2023
    Assignee: President and Fellows of Harvard College
    Inventors: Evan R. Daugharthy, Richard C. Terry, Je-Hyuk Lee, George M. Church, Benjamin W. Pruitt
  • Patent number: 11530438
    Abstract: Provided herein is a circular proximity ligation assay in which proximity-probes are employed as bridges to connect two free oligonucleotides via a dual ligation event, resulting in the formation of a circle. The circles are then quantified by, e.g., qPCR. The addition of an extra oligonucleotide is believed to enhance specificity by decreasing the probability of random background ligation events. In addition, circle formation may have selective advantages, as uncircularized DNA can be removed by a simple exonuclease treatment and it has streamlined the workflow by eliminating preamplification prior to qPCR.
    Type: Grant
    Filed: February 20, 2018
    Date of Patent: December 20, 2022
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Henrik H. J. Persson, Roxana Jalili, Joseph L. Horecka, Ronald W. Davis
  • Patent number: 11530450
    Abstract: In some embodiments, the present inventions relates generally to compositions, methods and kits for use in discriminating sequence variation between different alleles. More specifically, in some embodiments, the present invention provides for compositions, methods and kits for quantitating rare (e.g., mutant) allelic variants, such as SNPs, or nucleotide (NT) insertions or deletions, in samples comprising abundant (e.g., wild type) allelic variants with high specificity and selectivity. In particular, in some embodiments, the invention relates to a highly selective method for mutation detection referred to as competitive allele-specific TaqMan PCR (“cast-PCR”).
    Type: Grant
    Filed: January 16, 2020
    Date of Patent: December 20, 2022
    Inventors: Caifu Chen, Ruoying Tan
  • Patent number: 11530456
    Abstract: The present invention relates to methods for determining endonuclease activity in a sample. In particular, the present invention relates to a method for determining viable pathogenic bacteria in a sample based on patterns of endonuclease activity.
    Type: Grant
    Filed: April 4, 2019
    Date of Patent: December 20, 2022
    Assignees: Aarhus Universitet, The Chinese University of Hong Kong
    Inventors: Marianne Smedegaard Hede, Birgitta Ruth Knudsen, Magnus Stougaard, Yi-Ping Ho
  • Patent number: 11519029
    Abstract: Provided herein are methods for sequencing both strands of a double stranded nucleic acid fragment that improves fidelity and accuracy of a sequence determination compared to traditional next generation sequencing methods. Compositions and kits for use in the methods are also provided.
    Type: Grant
    Filed: May 29, 2022
    Date of Patent: December 6, 2022
    Assignee: Singular Genomics Systems, Inc.
    Inventors: Eli N. Glezer, Martin Maria Fabani, Sabrina Shore, Daan Witters
  • Patent number: 11517905
    Abstract: A method to monitor and control the temperature of a sample holder of a laboratory instrument during execution of a temperature profile on the sample holder is presented. The laboratory instrument comprises a sample holder with high temperature uniformity and at least three identical temperature sensors. The measured actual temperatures of the sample holder are processed in order to determine if the execution of the temperature profile should be continued or aborted. Furthermore, temperature sensors which measure actual temperatures that do not fulfil certain requirements are excluded from further monitoring and controlling the temperature of a sample holder.
    Type: Grant
    Filed: July 18, 2019
    Date of Patent: December 6, 2022
    Assignee: Roche Molecular Systems, Inc.
    Inventors: Sven Ebert, Paul Federer, Pius Hermann, Stefan Vollenweider
  • Patent number: 11512308
    Abstract: Provided herein are methods, compositions, and kits for removing a portion of a sequence in a member of a nucleic acid library.
    Type: Grant
    Filed: March 9, 2022
    Date of Patent: November 29, 2022
    Assignee: 10x Genomics, Inc.
    Inventors: Caroline Julie Gallant, Marlon Stoeckius, Katherine Pfeiffer
  • Patent number: 11499191
    Abstract: A technique for sequencing nucleic acids in an automated or semi-automated manner is disclosed. Sample arrays of a multitude of nucleic acid sites are processed in multiple cycles to add nucleotides to the material to be sequenced, detect the nucleotides added to sites, and to de-block the added nucleotides of blocking agents and tags used to identify the last added nucleotide. Multiple parameters of the system are monitored to enable diagnosis and correction of problems as they occur during sequencing of the samples. Quality control routines are run during sequencing to determine quality of samples, and quality of the data collected.
    Type: Grant
    Filed: August 20, 2018
    Date of Patent: November 15, 2022
    Assignee: ILLUMINA, INC.
    Inventors: Robert C. Kain, David L. Heiner, Chanfeng Zhao, Kevin Gunderson
  • Patent number: 11492658
    Abstract: Disclosed are methods for detecting a target nucleic acid in a sample. The methods include contacting the sample, in the presence of a polymerase and an endonuclease, with a first oligonucleotide comprising, in the 5? to 3? direction, a first signal DNA generation sequence, an endonuclease recognition site, and a sequence complementary to the 3? end of a target nucleic acid; a second oligonucleotide comprising, in the 5? to 3? direction, a second signal DNA generation sequence, an endonuclease recognition site, and a sequence that is homologous to the first signal DNA generation sequence of the first oligonucleotide; a third oligonucleotide comprising, in the 5? to 3? direction, a third signal DNA generation sequence, an endonuclease recognition site, and a sequence that is homologous to the second signal DNA generation sequence of the second oligonucleotide.
    Type: Grant
    Filed: March 12, 2020
    Date of Patent: November 8, 2022
    Assignee: ABBOTT LABORATORIES
    Inventors: Makoto Komori, Toru Yoshimura
  • Patent number: 11492666
    Abstract: A method for determining the presence of an allele, including (a) binding a polymerase to a double stranded nucleic acid that includes a primer hybridized to a template, the template including a first allele of a locus; (b) adding a nucleotide to the primer via catalytic activity of the polymerase, thereby producing an extended nucleic acid; (c) dissociating the polymerase from the extended nucleic acid; (d) detecting dissociation of the polymerase from the extended nucleic acid; and (e) comparing the dissociation of the polymerase from the extended nucleic acid to dissociation of the polymerase from a second double stranded nucleic acid, the second double stranded nucleic acid including a primer hybridized to the same position of the locus as the primer of the extended nucleic acid.
    Type: Grant
    Filed: February 14, 2018
    Date of Patent: November 8, 2022
    Assignee: PACIFIC BIOSCIENCES OF CALIFORNIA, INC.
    Inventors: Denis Malyshev, Sean Stromberg
  • Patent number: 11492657
    Abstract: Described herein is a method to create dendritic biocompatible polymers from pairs of complementary dendritic nucleic acid monomers in a controlled manner, using polymerization triggers. The dendritic monomers are constituted of nucleic acids and an organic polymer capable of self-assembly. Each polymer contains approximately 200 dendrites that can be used to attach labels and constitute a biologically compatible signal amplification technology. Depending on the context this technology could be used to reveal the presence of a large variety of analytes such as specific nucleic acid molecules, small molecules, proteins, and peptides.
    Type: Grant
    Filed: February 28, 2018
    Date of Patent: November 8, 2022
    Inventors: Scott E. Fraser, Simon Restrepo, Joseph P. Dunham
  • Patent number: 11486002
    Abstract: The present invention relates to a method for the highly specific, targeted capture of regions of human genomes and transcriptomes from the blood, i.e. from cell free circulating DNA, exosomes, microRNA, circulating tumor cells, or total blood cells, to allow for the highly sensitive detection of mutation, expression, copy number, translocation, alternative splicing, and methylation changes using combined nuclease, ligation, polymerase, and massively parallel sequencing reactions. The method generates a collection of different circular chimeric single-stranded nucleic acid constructs, suitable for sequencing on multiple platforms. In some embodiments, each construct of the collection comprised a first single stranded segment of original genomic DNA from a host organism and a second single stranded synthetic nucleic acid segment that is linked to the first single stranded segment and comprises a nucleotide sequence that is exogenous to the host organism.
    Type: Grant
    Filed: July 29, 2019
    Date of Patent: November 1, 2022
    Assignee: CORNELL UNIVERSITY
    Inventors: Francis Barany, John William Efcavitch
  • Patent number: 11478795
    Abstract: A microfluidic device for analysing nucleic acids includes a pump unit with a pumping volume, a filter unit for receiving a lysate, and a reaction chamber. The pump unit, the filter unit and the reaction chamber are arranged in the stated order in a pump direction of the pump unit. The microfluidic device is configured to pump an elution medium via the pump unit into the filter unit for elution and subsequently into the reaction chamber for further treatment.
    Type: Grant
    Filed: October 26, 2017
    Date of Patent: October 25, 2022
    Assignee: Robert Bosch GmbH
    Inventors: Bernd Faltin, Jochen Rupp, Juergen Steigert, Christian Dorrer, Karsten Seidl
  • Patent number: 11479809
    Abstract: Localized detection of RNA in a tissue sample that includes cells is accomplished on an array. The array include a number of features on a substrate. Each feature includes a different capture probe immobilized such that the capture probe has a free 3? end. Each feature occupies a distinct position on the array and has an area of less than about 1 mm2. Each capture probe is a nucleic acid molecule, which includes a positional domain including a nucleotide sequence unique to a particular feature, and a capture domain including a nucleotide sequence complementary to the RNA to be detected. The capture domain can be at a position 3? of the positional domain.
    Type: Grant
    Filed: March 25, 2022
    Date of Patent: October 25, 2022
    Assignee: Spatial Transcriptomics AB
    Inventors: Jonas Frisen, Patrik Stahl, Joakim Lundeberg
  • Patent number: 11473127
    Abstract: The present invention relates to a method for providing an analytical signal for determination of the presence of a target nucleic acid sequence in a sample. The present invention can contribute to dramatic improvement in methods for detecting target nucleic acid sequences using different detection temperatures and reference values. The present invention allows detection of a target nucleic acid sequence in a more accurate, effective and reproducible manner, by removing or adjusting a signal region that may affect the detection of a target nucleic acid sequence.
    Type: Grant
    Filed: March 27, 2018
    Date of Patent: October 18, 2022
    Assignee: SEEGENE, INC.
    Inventors: Young Jo Lee, Han Bit Lee
  • Patent number: 11473138
    Abstract: The present disclosure provides compositions, methods, systems, and devices for polynucleotide processing. Such polynucleotide processing may be useful for a variety of applications, including polynucleotide sequencing. In some cases, this disclosure provides methods for the generation of polynucleotide barcode libraries, and for the attachment of such polynucleotides to target polynucleotides.
    Type: Grant
    Filed: November 27, 2019
    Date of Patent: October 18, 2022
    Assignee: 10X GENOMICS, INC.
    Inventors: Benjamin Hindson, Mirna Jarosz, Paul Hardenbol, Michael Schnall-Levin, Kevin Ness, Serge Saxonov