Patents Examined by David J Makiya
  • Patent number: 9347894
    Abstract: An imaging system may include a main enclosure having at least one access door that defines a substantially light-tight imaging compartment when the access door is in a closed position. An object platform provided within the main enclosure holds an object to be imaged. A camera system positioned on a first side of the object platform is operable to capture a visible light image of the object. A radiation detector positioned on the first side of the object platform is moveable from a first position to a second position across a field of view of the camera system. The radiation detector is operable to capture a radiographic image of the object by moving the radiation detector from the first position to the second position while detecting radiation from the object.
    Type: Grant
    Filed: August 31, 2011
    Date of Patent: May 24, 2016
    Assignee: Spectral Instruments Imaging, LLC
    Inventors: Gary R. Sims, Michael B. Nelson, Michael D. Cable
  • Patent number: 9341582
    Abstract: An object of this invention is to provide a tomography method and a tomography system capable of tomographic imaging targeted uniquely to the test object among subjects under test. The method involves performing a process of generating projection data about the region of interest by selecting one reference projection data set from a plurality of projection data generated in a tomography process using a plurality of X-ray energy levels and by subtracting from the reference projection data set the product of an attenuation coefficient and the transmission length of the material configuring any region other than the region of interest detected by detector elements of detectors, and performing an image reconstruction computing process to generate a tomographic or stereoscopic image of the region of interest through image reconstruction based on the projection data about the region of interest generated in the projection data generating process.
    Type: Grant
    Filed: September 5, 2013
    Date of Patent: May 17, 2016
    Assignee: HITACHI, LTD.
    Inventors: Yasushi Nagumo, Noriyuki Sadaoka
  • Patent number: 9341566
    Abstract: To obtain a resin type identification method and a resin type identification apparatus with which an optimum infrared reflection spectrum for identifying a resin piece can be selected and accurate identification processing can be performed successively on individual resin pieces even when the resin pieces are identified using a single optical detector, at least one identifying signal power is selected by executing signal processing on the basis of signal powers corresponding to infrared reflection intensities obtained by emitting infrared light onto the resin piece, and the resin type of the resin piece is identified on the basis of an infrared reflection spectrum corresponding to the selected identifying signal power.
    Type: Grant
    Filed: January 16, 2014
    Date of Patent: May 17, 2016
    Assignees: Mitsubishi Electric Corporation, Shimadzu Corporation
    Inventors: Masaru Kinugawa, Muneaki Mukuda, Sonoko Umemura, Yasuyuki Nakagawa, Naoji Moriya, Toru Yamaguchi, Yukihisa Wada
  • Patent number: 9339191
    Abstract: Provided is a near-infrared spectroscopy apparatus using a phosphor. [Object]: Information in a specimen is observed by using light without contacting an optical fiber and an electronic circuit with the specimen. [Means for Solution]: A small and lightweight phosphor is contacted with the specimen to measure the fluorescence intensity at a separate position.
    Type: Grant
    Filed: June 15, 2009
    Date of Patent: May 17, 2016
    Assignee: Hitachi, Ltd.
    Inventors: Masashi Kiguchi, Tsukasa Funane, Kei Utsugi, Atsushi Suzuki
  • Patent number: 9338868
    Abstract: A filament current that is to be supplied to a filament of an x-ray tube under imaging conditions, from the imaging conditions of the tube current and the tube voltage that is to be supplied to the x-ray tube at the time of radiographic imaging, are stored as a filament current setting value in a storing portion, and the difference between an anticipated value for the tube current when x-ray emission is performed at a given filament current and a measured value for the tube current when x-ray emission is actually performed at that filament current is measured over time as a tube current value difference, and when the mean value for the tube current value difference over a specific time interval exceeds a setting value that has been set in advance, the filament current setting value that is stored in the storing portion is corrected.
    Type: Grant
    Filed: May 24, 2012
    Date of Patent: May 10, 2016
    Assignee: SHIMADZU CORPORATION
    Inventor: Katsuhiro Yabugami
  • Patent number: 9335422
    Abstract: A radiographic imaging device including: a detector that detects an irradiation start of radiation irradiated in imaging of a radiographic image; a derivation unit that derives an irradiation amount of radiation that will be irradiated within a specific period of time based on input data; a controller that makes a power supply amount to the detector smaller and lowers detection sensitivity to radiation irradiation start in the detector the larger the radiation irradiation amount derived by the derivation unit; and an imaging unit that images the radiographic image after radiation irradiation start has been detected by the detector.
    Type: Grant
    Filed: July 16, 2013
    Date of Patent: May 10, 2016
    Assignee: FUJIFILM Corporation
    Inventor: Yasufumi Oda
  • Patent number: 9329141
    Abstract: A device and method of the present disclosure provides large field-of-view Talbot-Lau phase contrast CT systems up to very high X-ray energy. The device includes microperiodic gratings tilted at glancing incidence and tiled on a single substrate to provide the large field-of-view phase contrast CT system. The present disclosure is a simple, economical, and accurate method for combining multiple GAIs into a larger FOV system, capable of performing phase-contrast tomography (PC-CT) on large objects. The device and method can be applied to medical X-ray imaging, industrial non-destructive testing, and security screening.
    Type: Grant
    Filed: February 10, 2014
    Date of Patent: May 3, 2016
    Assignee: THE JOHNS HOPKINS UNIVERSITY
    Inventors: Dan Stutman, Michael Finkenthal
  • Patent number: 9326738
    Abstract: Approaches for acquiring CT image data corresponding to a full scan, but at a reduced dose are disclosed. In one implementation, X-ray tube current modulation is employed to reduce the effective dose. In other implementations, acquisition of sparse views, z-collimation, and two-rotation acquisition protocols may be employed to achieve a reduced dose relative to a full-scan acquisition protocol.
    Type: Grant
    Filed: June 30, 2011
    Date of Patent: May 3, 2016
    Assignee: General Electric Company
    Inventors: Zhye Yin, Roy Arnulf Helge Nilsen, Jiahua Fan, Thomas Matthew Benson, Bruno Kristiaan Bernard De Man, Jed Douglas Pack, Kai Zeng
  • Patent number: 9325913
    Abstract: A radiation detector is provided that provides fast sequential image acquisition. In one embodiment, the radiation detector a diode capacitor that is charged in response to a radiation exposure event. The charge stored in the diode capacitor is transferred to a separate storage capacitor, allowing a new charge to be generated and stored at the diode capacitor.
    Type: Grant
    Filed: December 28, 2011
    Date of Patent: April 26, 2016
    Assignee: GENERAL ELECTRIC COMPANY
    Inventors: Ching-Yeu Wei, Jeffrey Wayne Eberhard, George Edward Possin
  • Patent number: 9322927
    Abstract: The present invention relates to a fiber-optic sensor system for measuring the relative dose of a therapeutic proton beam by measuring Cerenkov radiation and a method of measuring using the same, and more particularly to a fiber-optic sensor system for precisely and economically measuring a proton beam by measuring the Cerenkov radiation generated from a fiber-optic sensor and a method of measuring using the same. The present invention comprises a proton beam source, a fiber-optic sensor for measuring the Bragg peak of the proton beam and SOBP, an optical detector for measuring the Cerenkov radiation, and a pair of optical fibers connecting the fiber-optic sensor and the optical detector, wherein the fiber-optic sensor being irradiated with a proton beam, the Cerenkov radiation generated in the optical fibers themselves is delivered through the optical detector to an amplifier system, and the resulting signal is transferred to a computer.
    Type: Grant
    Filed: July 23, 2012
    Date of Patent: April 26, 2016
    Assignee: Konkuk University Industrial Cooperation Corp.
    Inventors: Bong Soo Lee, Kyoung Won Jang, Wook Jae Yoo, Sang Hun Shin, Dong Ho Shin
  • Patent number: 9322936
    Abstract: An X-ray line detector includes a housing having an upper part a lower part and a linear inlet slot for X-ray radiation to be detected. At least one detector element including a plurality of linearly arranged photodiodes is disposed opposite the inlet slot. Each photodiode is arranged on a printed circuit board mounted on a base carrier disposed in the housing. Each photodiode has a multiplicity of pixels including respective active areas of equal width arranged equidistantly in relation to each other with distances between the active areas being equidistant. Adjacent printed circuit boards are spaced apart from each other at a distance such that edge pixels on the respective adjacent printed circuit boards are disposed at a distance from one another corresponding to a sum of the width of the active area of a pixel and twice the distance between adjacent pixels of a photodiode.
    Type: Grant
    Filed: December 27, 2013
    Date of Patent: April 26, 2016
    Assignee: Yxlon International GmbH
    Inventor: Klaus Bavendiek
  • Patent number: 9320482
    Abstract: An X-ray imaging system has two types of electronic cassettes and one type of IP cassette. Upon entering a body portion to be imaged, an input and output controller retrieves from an imaging condition table of the IP cassette an imaging condition corresponding to the body portion as a reference imaging condition. An imaging condition calculator multiplies reference exposure time of the reference imaging condition by a sensitivity coefficient of each electronic cassette, to calculate an imaging condition to be applied in using each electronic cassette. An input and output controller displays the imaging conditions of the electronic cassettes and the IP cassette and choice buttons for choosing one of the electronic cassettes and the IP cassette in a list form on a monitor.
    Type: Grant
    Filed: March 13, 2013
    Date of Patent: April 26, 2016
    Assignee: FUJIFILM CORPORATION
    Inventor: Takashi Tajima
  • Patent number: 9320477
    Abstract: A CT system includes a rotatable gantry having an opening to receive an object to be scanned, an x-ray source configured to project an x-ray beam toward the object having a primary intensity, a detector configured to detect high frequency electromagnetic energy passing through the object and output imaging data, and a data acquisition system (DAS) connected to the detector and configured to receive the imaging data. The system also includes a computer programmed to obtain image projection data of the object from the DAS, correct the projection data using a scatter function that is based at least on a known characteristic of the x-ray beam, and generate images using the corrected projection data.
    Type: Grant
    Filed: September 1, 2011
    Date of Patent: April 26, 2016
    Assignee: General Electric Company
    Inventors: Xin Liu, Jiang Hsieh, Xiaoye Wu
  • Patent number: 9322789
    Abstract: A method is provided for feeding-in X-ray fluoroscopy images of an object in the context of a digital laminography technique, in which the X-ray fluoroscopy images are not fed in at 360°, but a feed-in of first X-ray fluoroscopy images takes place at 180° and, after tilting the object, a feed-in of second X-ray fluoroscopy images follows in the same angular range of 180°. The second X-ray fluoroscopy images, after suitable reflection onto the complementary points, are set to the first X-ray fluoroscopy images and, from the resultant complete data set, a calculation is carried out in the context of the digital laminography technique. A multiaxis manipulator system is used for feeding-in X-ray fluoroscopy images in the context of carrying out a digital laminography technique on an object, which is secured on a fixing device of the manipulator system.
    Type: Grant
    Filed: July 5, 2013
    Date of Patent: April 26, 2016
    Assignee: YXLON INTERNATIONAL GMBH
    Inventor: Martin Muenker
  • Patent number: 9316745
    Abstract: According to one embodiment, an X-ray CT apparatus includes an energy classifying unit, a setting unit, and an image generating unit. The energy classifying unit is configured to classify photons passing through an object into a number of energy bins in accordance with energy of the photons. The setting unit is configured to set an energy level and set an energy width of a plurality of energy bins of the number of energy bins. The image generating unit is configured to generate an extended energy bin image based on information on the photons classified into the plurality of energy bins, the image having the energy level and the energy width of the plurality of energy bins.
    Type: Grant
    Filed: July 11, 2013
    Date of Patent: April 19, 2016
    Assignees: KABUSHIKI KAISHA TOSHIBA, TOSHIBA MEDICAL SYSTEMS CORPORATION
    Inventor: Yasuhiro Noshi
  • Patent number: 9320128
    Abstract: A well-logging apparatus may include a charged particle source, a target electrode, and an accelerator column. The accelerator column may include a housing extending between the charged particle source and the target electrode, a series of spaced apart accelerator electrodes carried by the housing, a series of ring-shaped resistors surrounding the housing, and a respective connector coupling adjacent ones of the series of ring-shaped resistors together and to a corresponding one of the series of spaced apart accelerator electrodes.
    Type: Grant
    Filed: March 14, 2013
    Date of Patent: April 19, 2016
    Assignee: SCHLUMBERGER TECHNOLOGY CORPORATION
    Inventors: Jani Petteri Reijonen, Marc-Andre de Looz
  • Patent number: 9314647
    Abstract: The present embodiments relate to a holding arm for a detector that may be positioned on a first arm end or a diagnostic beam source that may be positioned on the first arm end. The present embodiments also relate to a radiation therapy arrangement with the holding arm. The holding arm may be positioned in a region of a second arm end in an emitter head region of a radiation therapy system and is essentially curved.
    Type: Grant
    Filed: August 12, 2011
    Date of Patent: April 19, 2016
    Assignee: Siemens Aktiengesellschaft
    Inventors: Franz Dirauf, Franz Fadler, Christian Ziegler
  • Patent number: 9314218
    Abstract: An integrated microtomography and optical imaging system includes a rotating table that supports an imaging object, an optical stage, and separate optical and microtomography imaging systems. The table rotates the imaging object about a vertical axis running therethrough to a plurality of different rotational positions during a combined microtomography and optical imaging process. The optical stage can be a trans-illumination, epi-illumination or bioluminescent stage. The optical imaging system includes a camera positioned vertically above the imaging object. The microtomography system includes an x-ray source positioned horizontally with respect to the imaging object. Optical and x-ray images are both obtained while the imaging object remains in place on the rotating table. The stage and table are included within an imaging chamber, and all components are included within a portable cabinet.
    Type: Grant
    Filed: June 20, 2011
    Date of Patent: April 19, 2016
    Assignee: Caliper Life Sciences, Inc.
    Inventors: Daniel G. Stearns, David G. Nilson, Bradley W. Rice
  • Patent number: 9310492
    Abstract: A radiographic image reading device includes a reading unit configured to photoelectrically read photostimulated luminescence light produced from a storage phosphor sheet illuminated with excitation light, the storage phosphor sheet, at which a radiographic image is stored, being scanned by a scanning unit using the excitation light; and a control unit configured to control the reading unit so as to cause the reading unit, in a case of reading at a first resolution, to read with excitation light at a first scanning speed and a first intensity and, in a case of reading at a second resolution that is a higher resolution than the first resolution, to read with excitation light at a second scanning speed that is slower than the first scanning speed and a second intensity that is smaller than the first intensity.
    Type: Grant
    Filed: July 25, 2014
    Date of Patent: April 12, 2016
    Assignee: FUJIFILM Corporation
    Inventors: Hiromi Ishikawa, Yasunori Ohta, Tomoki Inoue, Nobuhiko Ogura
  • Patent number: 9304213
    Abstract: An X-ray beam position and stability detector is provided having a first metal blade collinear with a second metal blade, where an edge of the first metal blade is opposite an edge of the second metal blade, where the first metal blade edge and the second metal blade edge are disposed along a centerline with respect to each other, where the metal blades are capable of photoelectron emission when exposed to an x-ray beam, a metal coating on the metal blades that is capable of enhancing the photoelectron emission, or suppressing energy-resonant contaminants, or enhancing the photoelectron emission and suppressing energy-resonant contaminants, a background shielding element having an electrode capable of suppressing photoelectron emission from spurious x-rays not contained in an x-ray beam of interest, and a photoelectron emission detector having an amplifier capable of detecting the photoelectron emission as a current signal.
    Type: Grant
    Filed: March 10, 2014
    Date of Patent: April 5, 2016
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Thomas A. Rabedeau, Douglas G. Van Campen, Peter M. Stefan