Patents Examined by David M. Brunsman
  • Patent number: 11072535
    Abstract: A zeolitic material having framework type CHA, comprising a transition metal M and an alkali metal A, and having a framework structure comprising a tetravalent element Y, a trivalent element X and O, wherein the transition metal M is a transition I metal of groups 7 to 12 of the periodic table, A is one or more of K and Cs, Y is one or more of Si, Ge, Ti, Sn and Zr, and X is one or more of Al, B, Ga and In. A process for preparing such a zeolitic material. Use of such a zeolitic material.
    Type: Grant
    Filed: August 3, 2018
    Date of Patent: July 27, 2021
    Assignee: BASF SE
    Inventors: Mathias Feyen, Ulrich Mueller, Xinhe Bao, Weiping Zhang, Dirk De Vos, Hermann Gies, Feng-Shou Xiao, Toshiyuki Yokoi, Ute Kolb, Bernd Marler, Yong Wang, Trees De Baerdemaeker, Chuan Shi, Xiulian Pan, Xiangju Meng
  • Patent number: 11071966
    Abstract: Disclosed are passive NOx adsorbers and methods for synthesizing the same. Small-pore zeolitic materials with practical loadings of transition metals atomically dispersed in the micropores are described herein. Also demonstrated are simple and scalable synthesis routes to high loadings of atomically dispersed transition metals in the micropores of a small-pore zeolite.
    Type: Grant
    Filed: August 21, 2019
    Date of Patent: July 27, 2021
    Assignee: BATTELLE MEMORIAL INSTITUTE
    Inventors: Konstantin Khivantsev, Janos Szanyi, Nicholas R. Jaegers, Libor Kovarik, Feng Gao, Yong Wang
  • Patent number: 11066309
    Abstract: An example material includes a planar layer of MFI zeolite. The planar layer has a thickness in a range between 4 nm and 10 nm for at least 70% of a basal area of the planar layer. In one embodiment, the planar layer includes an embedded particle of an MFI zeolite.
    Type: Grant
    Filed: October 24, 2017
    Date of Patent: July 20, 2021
    Assignee: Regents of the University of Minnesota
    Inventors: Michael Tsapatsis, Mi Young Jeon, Pyung-Soo Lee, Donghun Kim, Prashant Kumar, K. Andre Mkhoyan, Joern Ilja Siepmann
  • Patent number: 11059724
    Abstract: The present application relates to a porous material and preparation methods thereof, and anodes and devices including the same. The porous material provided by the present application includes a material of the formula SiaMbOx, wherein the ratio of x to a is about 0.6 to about 1.5, and the ratio of a to b is about 8 to about 10,000, wherein M includes at least one selected from the group consisting of Al, Si, P, Mg, Ti and Zr. The anode and an electrochemical device including the porous material exhibit higher rate performance, higher first coulombic efficiency, higher cycle stability and lower cycle expansion ratio.
    Type: Grant
    Filed: July 31, 2019
    Date of Patent: July 13, 2021
    Assignee: NINGDE AMPEREX TECHNOLOGY LIMITED
    Inventors: Ting Yi, Chengbo Zhang, Hang Cui, Yuansen Xie
  • Patent number: 11053129
    Abstract: A magnesium modified Y-type molecular sieve has a rare earth oxide content of about 4% to about 11% by weight, a magnesium oxide content of about 0.1% to about 4% by weight, a sodium oxide content of about 0.3% to about 0.8% by weight, a total pore volume of about 0.33 mL/g to about 0.39 mL/g, a percentage of the pore volume of secondary pores having a pore size of 2-100 nm to the total pore volume of the modified Y-type molecular sieve of about 10% to about 30%, a lattice constant of about 2.440 nm to about 2.455 nm, a percentage of non-framework aluminum content to the total aluminum content of the modified Y-type molecular sieve of no more than about 20%, and a lattice collapse temperature of not lower than about 1045° C.
    Type: Grant
    Filed: February 12, 2018
    Date of Patent: July 6, 2021
    Assignees: CHINA PETROLEUM & CHEMICAL CORPORATION, RESEARCH INSTITUTE OF PETROLEUM PROCESSING, SINOPEC
    Inventors: Lingping Zhou, Weilin Zhang, Mingde Xu, Zhenyu Chen, Huiping Tian, Yuxia Zhu
  • Patent number: 11052381
    Abstract: A modified Y-type molecular sieve has a rare earth oxide content of about 4% to about 12% by weight, a phosphorus content of about 0% to about 10% by weight, a sodium oxide content of no more than about 1.0% by weight, a total pore volume of about 0.36 to 0.48 mL/g, a percentage of the pore volume of secondary pores to the total pore volume of about 20% to about 40%, a lattice constant of about 2.440 nm to about 2.455 nm, a percentage of the non-framework aluminum content to the total aluminum content of no more than about 10%, a lattice collapse temperature of not lower than about 1060° C., and a ratio of Brønsted acid to Lewis acid of no less than about 3.50. The preparation of the molecular sieve includes ion-exchange with rare earth, hydrothermal roasting, gas phase ultra-stabilization, acid treatment, and an optional phosphorus modification.
    Type: Grant
    Filed: February 12, 2018
    Date of Patent: July 6, 2021
    Assignees: CHINA PETROLEUM & CHEMICAL CORPORATION, RESEARCH INSTITUTE OF PETROLEUM PROCESSING, SINOPEC
    Inventors: Lingping Zhou, Weilin Zhang, Mingde Xu, Zhenyu Chen, Huiping Tian, Yuxia Zhu
  • Patent number: 11046587
    Abstract: A continuous process for preparing a zeolitic material comprising (i) preparing a mixture comprising a source of YO2, optionally a source of X2O3, and a liquid solvent system; (ii) continuously feeding the mixture prepared in (i) into a continuous flow reactor at a liquid hourly space velocity in the range of from 0.3 to 20 h?1 for a duration of at least 1 h; and (iii) crystallizing the zeolitic material from the mixture in the continuous flow reactor, wherein the mixture is heated to a temperature in the range of from 100 to 300° C.; wherein the volume of the continuous flow reactor is in the range of from 150 cm3 to 75 m3, as well as to zeolitic materials which may be obtained according to the inventive process and to their use.
    Type: Grant
    Filed: June 14, 2017
    Date of Patent: June 29, 2021
    Assignee: BASF SE
    Inventors: Stefan Marx, Stefanie Clade, Lena Arnold, Uwe Diehlmann, Ulrich Mueller
  • Patent number: 11046586
    Abstract: Compositions and methods for preparing mesoporous and/or mesostructured materials from low SAR zeolites are provided herewith. In particular, methods are provided that involve: (a) providing a low SAR zeolite, (b) optionally subjecting the low SAR zeolite to an acid framework modification, and (c) subjecting the framework-modified zeolite to a mesopore formation treatment. The resulting mesoporous zeolites can have bi-modal mesoporosity and higher aluminum contents relative to existing mesoporous zeolites.
    Type: Grant
    Filed: April 17, 2020
    Date of Patent: June 29, 2021
    Assignee: W.R. Grace & Co.-CONN
    Inventors: Kunhao Li, Javier Garcia-Martinez
  • Patent number: 11040884
    Abstract: The present invention relates to a process for preparing zeolite crystals continuously, comprising the continuous introduction of a composition capable of generating zeolite crystals into at least one crystallization reaction zone subjected to stirring means, giving said composition a flow characterized by a relative Reynolds number Rer of between 40 and 50 000, and the continuous recovery of the crystals formed according to a flow characterized by a net Reynolds number Ren of between 1 and 1500.
    Type: Grant
    Filed: March 12, 2018
    Date of Patent: June 22, 2021
    Assignee: Arkema France
    Inventors: Serge Nicolas, Cécile Lutz, Jean-Luc Dubois, Yvan Lecomte
  • Patent number: 11040337
    Abstract: A microporous crystalline material having a molar silica to alumina ratio (SAR) ranging from 10 to 15 and a fraction of Al in the zeolite framework of 0.63 or greater is disclosed. A method of selective catalytic reduction of nitrogen oxides in exhaust gas that comprises contacting exhaust gases, typically in the presence of ammonia, urea, an ammonia generating compound, or a hydrocarbon compound, with an article comprising the disclosed microporous crystalline is also disclosed. Further, a method of making the disclosed microporous crystalline material is disclosed.
    Type: Grant
    Filed: April 30, 2019
    Date of Patent: June 22, 2021
    Assignee: PQ Corporation
    Inventors: Hong-Xin Li, Anton Petushkov, Lifeng Wang, Bjorn Moden
  • Patent number: 11040885
    Abstract: A family of crystalline aluminosilicate zeolites has been synthesized that is a layered pentasil zeolite. These zeolites are represented by the empirical formula: Mmn+Rrp+Al1-xExSiyOz where M is an alkali, alkaline earth, or rare earth metal such as sodium or strontium, R can be a mixture of organoammonium cations and E is a framework element such as gallium, iron, boron, or indium. These zeolites are characterized by unique x-ray diffraction patterns and compositions and have catalytic properties for carrying out various hydrocarbon conversion processes. The diffraction patterns can be characterized by the following table: 2? d(?) I/Io 7.92-7.99 11.04-11.31 m 8.79-8.88 ?9.94-11.09 m 20.28-20.56 4.31-4.35 w 23.10-23.18 3.83-3.84 vs 23.86-24.05 3.69-3.72 m 29.90-30.05 2.97-2.98 w 45.02-45.17 2.00-2.
    Type: Grant
    Filed: June 1, 2018
    Date of Patent: June 22, 2021
    Assignee: UOP LLC
    Inventors: Jaime G. Moscoso, Deng-Yang Jan
  • Patent number: 11033887
    Abstract: A new family of highly charged crystalline microporous metallophosphate molecular sieves has been synthesized. These metallophosphates are represented by the empirical formula of: Rp+rA+mM2+xEyPOz where A is an alkali metal cation, R is at least one quaternary organoammonium cation, M is a divalent metal such as zinc and E is a trivalent framework element such as aluminum or gallium. This family of high charge density metallophosphate materials are among the first metalloalumino(gallo)phosphate-type molecular sieves to be stabilized by combinations of alkali and quaternary organoammonium cations, enabling unique compositions. This family of high charge density metallophosphate molecular sieves has catalytic properties for carrying out various hydrocarbon conversion processes and separation properties for separating at least one component.
    Type: Grant
    Filed: October 7, 2019
    Date of Patent: June 15, 2021
    Assignee: UOP LLC
    Inventors: Gregory J. Lewis, Jaime G. Moscoso, Lisa M. Knight, Seungwan Seo, Christopher P. Nicholas, Junghwan Lee, Suk Bong Hong
  • Patent number: 11027983
    Abstract: An as-synthesized microporous material having a CHA structure and containing at least one organic structure directing agent that has the following general structure of the quaternary ammonium cation is disclosed: A microporous crystalline material made from the as-synthesized material is also disclosed. A method of making microporous crystalline material using one or more organic structure directing agents is also disclosed. A method of selective catalytic reduction of nitrogen oxides in exhaust gas that comprises contacting exhaust gases, typically in the presence of ammonia, urea, an ammonia generating compound, or a hydrocarbon compound, with an article comprising the disclosed microporous crystalline is also disclosed.
    Type: Grant
    Filed: June 15, 2020
    Date of Patent: June 8, 2021
    Assignee: PQ Corporation
    Inventors: Hong-Xin Li, Bjorn Moden, Anton Petushkov
  • Patent number: 11014821
    Abstract: The disclosure, in one aspect, relates to methods of preparing a CHA zeolite under ambient pressure conditions. In further aspects, the disclosure relates to methods such that a mother liquor can be isolated from a disclosed method, and recycled for use in a disclosed method for further preparation of a CHA zeolite. This abstract is intended as a scanning tool for purposes of searching in the particular art and is not intended to be limiting of the present disclosure.
    Type: Grant
    Filed: July 9, 2019
    Date of Patent: May 25, 2021
    Assignee: Zeolyfe, LLC
    Inventor: David Ari Lang
  • Patent number: 11008219
    Abstract: A method of synthesis for an aluminophosphate-based zeolite membrane includes a steps of preparing a mixed solution with a pH greater than or equal to 6 and less than or equal to 9 by mixing an acidic phosphorous source with an alkali source, a steps of preparing a starting material solution by adding and mixing an aluminum source to the prepared mixed solution, and a steps of synthesizing an aluminophosphate-based zeolite membrane by hydrothermally synthesizing the starting material solution.
    Type: Grant
    Filed: September 17, 2019
    Date of Patent: May 18, 2021
    Assignee: NGK Insulators, Ltd.
    Inventors: Takeshi Hagio, Kenichi Noda, Makoto Miyahara, Katsuya Shimizu
  • Patent number: 11007511
    Abstract: Methods of forming mesoporous zeolites with tunable pore widths are provided. In some embodiments, the method includes mixing a silicon-containing material, an aluminum-containing material, and at least a quaternary amine to produce a zeolite precursor solution. The zeolite precursor solution is pre-crystallized at a pre-crystallization temperature of greater than 125° C. and autogenous pressure to form a pre-crystallized zeolite precursor solution and combined with two or more distinct organosilane mesopore templates to produce a zeolite precursor gel. The zeolite precursor gel is crystallized to produce a crystalline zeolite intermediate and the crystalline zeolite intermediate is calcined to produce the mesoporous zeolite.
    Type: Grant
    Filed: May 8, 2018
    Date of Patent: May 18, 2021
    Assignee: Saudi Arabian Oil Company
    Inventors: Sarah L. Kobaslija, Jeremy Thomas O'Brien
  • Patent number: 11007513
    Abstract: Provided are novel synthesis techniques for producing pure phase aluminosilicate zeolite and a catalyst comprising the phase pure zeolite in combination with a metal, and methods of using the same.
    Type: Grant
    Filed: May 28, 2020
    Date of Patent: May 18, 2021
    Assignee: Johnson Matthey Public Limited Company
    Inventors: Hai-Ying Chen, Joseph Fedeyko, Raul Lobo, Trong Pham
  • Patent number: 11001502
    Abstract: A family of new crystalline molecular sieves designated SSZ-91 is disclosed, as are methods for making SSZ-91 and uses for SSZ-91. Molecular sieve SSZ-91 is structurally similar to sieves falling within the ZSM-48 family of molecular sieves, and is characterized as: (1) having a low degree of faulting, (2) a low aspect ratio that inhibits hydrocracking as compared to conventional ZSM-48 materials having an aspect ratio of greater than 8, and (3) is substantially phase pure.
    Type: Grant
    Filed: April 14, 2020
    Date of Patent: May 11, 2021
    Assignee: Chevron U.S.A. Inc.
    Inventors: Adeola Florence Ojo, Dan Xie, Yihua Zhang, Guan-Dao Lei
  • Patent number: 10994263
    Abstract: A polymer-catalyst assembly includes polarized polymeric nanofibers retaining a plurality of catalytic metallic nanoparticles. A method of making the polarized polymer-catalyst assembly may include providing a fiber mat having polymeric nanofibers retaining a plurality of catalytic metallic nanoparticles, stretching the fiber mat in a uniaxial direction, simultaneous with the step of stretching, thermally heating the fiber mat, simultaneous with the steps of stretching and thermally heating, subjecting the fiber mat to an electric field, whereby the simultaneous steps of stretching, thermally heating, and subjecting thereby form a polarized fiber mat.
    Type: Grant
    Filed: September 13, 2018
    Date of Patent: May 4, 2021
    Assignee: The University of Akron
    Inventors: George Chase, Dinesh Lolla, Ahmed Abutaleb
  • Patent number: 10995008
    Abstract: A process for the calcination of a zeolitic material, wherein the process contains the steps of (i) providing a zeolitic material containing YO2 and optionally further containing X2O3 in its framework structure in the form of a powder and/or of a suspension of the zeolitic material in a liquid, wherein Y stands for a tetravalent element and X stands for a trivalent element; (ii) atomization of the powder and/or of the suspension of the zeolitic material provided in (i) in a gas stream for obtaining an aerosol; and (iii) calcination of the aerosol obtained in (ii) for obtaining a calcined powder, a zeolitic material obtained by the above process, and its use as a molecular sieve, as an adsorbent, for ion-exchange, as a catalyst, and/or as a catalyst support.
    Type: Grant
    Filed: March 22, 2017
    Date of Patent: May 4, 2021
    Assignee: BASF SE
    Inventors: Benedikt Kalo, Thomas Geiger, Rene Koenig, Ulrich Mueller, Stefan Maurer