Patents Examined by David Naff
  • Patent number: 8227238
    Abstract: A large amount of entrapping immobilization pellets with highly stable quality are produced inexpensively by high-speed treatment. There is provided a process for producing entrapping immobilization pellets in which microorganisms are entrapped and immobilized in an immobilizing agent, the process comprising polymerizing a mixture containing the microorganisms and a solution of the immobilizing agent in a forming frame into a gel to prepare a pellet block.
    Type: Grant
    Filed: March 13, 2009
    Date of Patent: July 24, 2012
    Assignee: Hitachi Plant Technologies, Ltd.
    Inventors: Naoki Abe, Koutarou Aoyama, Tatsuo Sumino, Hiroyoshi Emori, Takayuki Kouno
  • Patent number: 8227582
    Abstract: The present invention provides an improved process for the direct and selective metallization of nucleic acids via metal nanoparticles produced in-situ in which a nucleic acid specific metal complex is reacted with a nucleic acid to produce a metal complex-nucleic acid conjugate, non-conjugated metal complex and/or non-conjugated by-products are removed, and the metal complex-nucleic acid conjugate is reacted with a reducing agent to produce a metal nanoparticle-nucleic acid composite. The metal nanoparticle-nucleic acid composites may be used, e. g., in the formation of nanowires, for electronic networks and circuits allowing a high density arrangement.
    Type: Grant
    Filed: November 21, 2001
    Date of Patent: July 24, 2012
    Assignee: Sony Deutschland GmbH
    Inventors: William Ford, Jurina Wessels, Oliver Harnack, Akio Yasuda
  • Patent number: 8227224
    Abstract: A method of making a molded part, including forming a liquid aggregate. A fungal inoculum and the liquid aggregate are inserted into a mold cavity. A portion of an object is inserted into the mold cavity. The fungal inoculum is grown into live mycelium that operably couples with the object. The mycelium is heated to terminate further growth and develop a composite part made of mycelium and the object.
    Type: Grant
    Filed: June 9, 2010
    Date of Patent: July 24, 2012
    Assignee: Ford Global Technologies, LLC
    Inventors: Raymond Edward Kalisz, Charles Alan Rocco
  • Patent number: 8227233
    Abstract: A method of making a molded part, including forming a liquid aggregate from a mixture of finely ground aggregate and a fluid. A mixture of a fungal inoculum and the liquid aggregate is formed. Nanoparticles are homogenously distributed throughout the mixture. The mixture is inserted into a mold cavity. Live mycelium is grown to fill the mold cavity. The live mycelium is heated to terminate further growth and develop a formed part.
    Type: Grant
    Filed: June 9, 2010
    Date of Patent: July 24, 2012
    Assignee: Ford Global Technologies, LLC
    Inventors: Raymond Edward Kalisz, Charles Alan Rocco
  • Patent number: 8227225
    Abstract: A method of making a plasticized mycelium structure, including dissolving a soluble polymer in a liquid thereby forming a polymer solution of polymer particles. The polymer solution is combined with a fungal inoculum capable of growing hyphae in the presence of an aggregate. The resulting mixture is allowed to grow into a mycelium network. The mycelium network is made up of hyphae which bond with the polymer particles found in the polymer solution forming a structure substantially made up of mycelium that has a plasticizer homogenously distributed throughout the structure. The structure is cured to terminate mycelium growth.
    Type: Grant
    Filed: June 9, 2010
    Date of Patent: July 24, 2012
    Assignee: Ford Global Technologies, LLC
    Inventors: Charles Alan Rocco, Raymond Edward Kalisz
  • Patent number: 8216549
    Abstract: A quantum dot (QD) conjugate comprises a QD and a ligand conjugated with the QD, in which the ligand has at least one thiol and at least one other functional group. The QD conjugate may further comprise a bioactive agent covalently coupled to the ligand to form a bioactive agent-tagged QD conjugate. A method for preparing a QD conjugate comprises the steps of: (1) providing a solution comprising a QD encapsulated within a dendrimer; (2) adding into the solution a ligand; and (3) allowing an exchange between the ligand and the dendrimer for the QD to obtain a ligand-QD conjugate, in which the ligand is covalently conjugated to the surface of the QD. The method may further comprise the step of coupling the ligand-QD conjugate to a bioactive agent to obtain a bioactive agent-tagged ligand-QD conjugate.
    Type: Grant
    Filed: June 17, 2009
    Date of Patent: July 10, 2012
    Assignee: National Health Research Institutes
    Inventors: Shu-Yi Lin, Leu-Wei Lo, Chung-Shi Yang
  • Patent number: 8211682
    Abstract: This invention relates to a composite material that comprises a support member that has a plurality of pores extending through the support member and, located in the pores of the support member, and filling the pores of the support member, a macroporous cross-linked gel. The invention also relates to a process for preparing the composite material described above, and to its use. The composite material is suitable, for example, for separation of substances, for example by filtration or adsorption, including chromatography, for use as a support in synthesis or for use as a support for cell growth.
    Type: Grant
    Filed: October 3, 2008
    Date of Patent: July 3, 2012
    Assignee: Natrix Separations Inc.
    Inventors: Ronald F. Childs, Carlos Filipe, Raja Ghosh, Alicja M. Mika, Jinsheng Zhou, Elena N. Komkova, Marcus Y. Kim, Tapan K. Dey
  • Patent number: 8206982
    Abstract: This invention relates to a composite material that comprises a support member that has a plurality of pores extending through the support member and, located in the pores of the support member, and filling the pores of the support member, a macroporous cross-linked gel. The invention also relates to a process for preparing the composite material described above, and to its use. The composite material is suitable, for example, for separation of substances, for example by filtration or adsorption, including chromatography, for use as a support in synthesis or for use as a support for cell growth.
    Type: Grant
    Filed: October 14, 2008
    Date of Patent: June 26, 2012
    Assignee: Natrix Separations Inc.
    Inventors: Ronald F. Childs, Carlos Filipe, Raja Ghosh, Alicja M. Mika, Jinsheng Zhou, Elena N. Komkova, Marcus Y. Kim, Tapan K. Dey
  • Patent number: 8206958
    Abstract: This invention relates to a composite material that comprises a support member that has a plurality of pores extending through the support member and, located in the pores of the support member, and filling the pores of the support member, a macroporous cross-linked gel. The invention also relates to a process for preparing the composite material described above, and to its use. The composite material is suitable, for example, for separation of substances, for example by filtration or adsorption, including chromatography, for use as a support in synthesis or for use as a support for cell growth.
    Type: Grant
    Filed: December 5, 2007
    Date of Patent: June 26, 2012
    Assignee: Natrix Separations Inc.
    Inventors: Ronald F. Childs, Tapan K. Dey, Carlos Filipe, Raja Ghosh, Marcus Y. Kim, Elena N. Komkova, Alicja M. Mika, Jinsheng Zhou
  • Patent number: 8202833
    Abstract: The present invention provides method and materials for forming a polymeric matrix having improved biocompatible properties. A polymerization accelerator is provided that includes an N-vinyl group and a biocompatible functional group. The polymerization accelerator is particularly useful for the polymerization of macromers, which can be used to form biocompatible polymeric coatings on the surface of biological materials, such as cells and tissue.
    Type: Grant
    Filed: November 26, 2003
    Date of Patent: June 19, 2012
    Assignee: Surmodics, Inc.
    Inventors: Dale G. Swan, Stephen J. Chudzik, Ronald F. Ofstead
  • Patent number: 8198055
    Abstract: Ethanol and other liquid products are produced by contacting syngas components such as CO or a mixture of CO2 and H2 with a surface of a membrane under anaerobic conditions and transferring these components in contact with a biofilm on the opposite side of the membrane. These steps provide a stable system for producing liquid products such as ethanol, butanol and other chemicals. The gas fed on the membrane's gas contact side transports through the membrane to form a biofilm of anaerobic microoganisms that converted the syngas to desired liquid products. A liquid impermeable layer of the membrane assists in establishing direct gas phase contact syngas components with the microorganisms. The system can sustain production with a variety of microorganisms and membrane configurations.
    Type: Grant
    Filed: September 5, 2008
    Date of Patent: June 12, 2012
    Assignee: Coskata, Inc.
    Inventors: Rathin Datta, Shih-Perng Tsai, Rahul Basu, Seong-Hoon Yoon
  • Patent number: 8192971
    Abstract: This invention relates to a composite material that comprises a support member that has a plurality of pores extending through the support member and, located in the pores of the support member, and filling the pores of the support member, a macroporous cross-linked gel. The invention also relates to a process for preparing the composite material described above, and to its use. The composite material is suitable, for example, for separation of substances, for example by filtration or adsorption, including chromatography, for use as a support in synthesis or for use as a support for cell growth.
    Type: Grant
    Filed: September 16, 2008
    Date of Patent: June 5, 2012
    Assignee: Natrix Separations Inc.
    Inventors: Ronald F. Childs, Carlos Filipe, Raja Ghosh, Alicja M. Mika, Jinsheng Zhou, Elena N. Komkova, Marcus Y. Kim, Tapan K. Dey
  • Patent number: 8192970
    Abstract: The method for treating microcystin-containing water which detoxifies microcystin in the microcystin-containing water, the method comprises the step of: bringing the microcystin-containing water into contact with a Sphingomonas bacterium to degrade biologically the microcystin in the microcystin-containing water, wherein: the Sphingomonas bacterium is a strain FERM P-19480 which is deposited as strain MDB1 with International Patent Organism Depositary, National Institute of Advanced Industrial Science and Technology.
    Type: Grant
    Filed: December 31, 2007
    Date of Patent: June 5, 2012
    Assignee: Hitachi Plant Technologies, Ltd.
    Inventors: Tatsuo Sumino, Takako Ogasawara, Ho-Dong Park
  • Patent number: 8187851
    Abstract: A method for formulating and immobilizing a protein and a protein matrix formed by the method. The protein matrix preparation method results in a physically and chemically stable protein matrix that has low swelling, non-leaching, high activity, and high mechanical strength properties. The method includes cross-linking and hardening the protein mixture and using a mold to form a protein into a desired shape and size.
    Type: Grant
    Filed: July 24, 2008
    Date of Patent: May 29, 2012
    Assignee: Medtronic Minimed, Inc.
    Inventors: Rajiv Shah, Bahar Reghabi, Rudy Montalvo, Yanan Zhang
  • Patent number: 8187880
    Abstract: This invention relates to a composite material that comprises a support member that has a plurality of pores extending through the support member and, located in the pores of the support member, and filling the pores of the support member, a macroporous cross-linked gel. The invention also relates to a process for preparing the composite material described above, and to its use. The composite material is suitable, for example, for separation of substances, for example by filtration or adsorption, including chromatography, for use as a support in synthesis or for use as a support for cell growth.
    Type: Grant
    Filed: April 23, 2008
    Date of Patent: May 29, 2012
    Assignee: Natrix Separations, Inc.
    Inventors: Ronald F. Childs, Carlos Filipe, Raja Ghosh, Alicja M. Mika, Jinsheng Zhou, Elena N. Komkova, Marcus Y. Kim, Tapan K. Dey
  • Patent number: 8178314
    Abstract: The invention relates to pyrimidines suitable as substrates for O6-alkylguanine-DNA alkyltransferases (AGT) of formula (I) wherein R1 is hydrogen, lower alkyl, halogen, cyano, trifluoromethyl or azido; R2 is a linker; and L is a label or a plurality of same or different labels. The invention further relates to methods of transferring a label from pyrimidines of formula (I) to O6-alkylguanine-DNA alkyltransferases (AGT) and AGT fusion proteins.
    Type: Grant
    Filed: April 25, 2006
    Date of Patent: May 15, 2012
    Assignee: Covalys Biosciences AG
    Inventors: Maik Kindermann, Markus Schwab
  • Patent number: 8173419
    Abstract: Equipment for treating wastewater by anaerobic ammonium oxidation includes an anaerobic ammonium oxidation vessel to receive water to be treated containing ammonium and nitrite and to denitrify ammonium and nitrite in the water by anaerobic ammonium oxidizing bacteria, forming denitrified treated water, an acclimatization vessel downstream from the anaerobic ammonium oxidation vessel to receive the denitrified treated water from the anaerobic ammonium oxidation vessel, the acclimization vessel containing an immobilizing material that collects the anaerobic ammonium oxidizing bacteria in the denitrified treated water as immobilized microorganisms attached to the immobilizing material, wherein the acclimatization vessel has a structure such that the immobilizing material is prevented from flowing out of the acclimatization vessel, and a pipe connecting the acclimatization vessel to the anaerobic ammonium oxidation vessel.
    Type: Grant
    Filed: July 11, 2008
    Date of Patent: May 8, 2012
    Assignee: Hitachi Plant Technologies, Ltd.
    Inventors: Kazuichi Isaka, Tatsuo Sumino
  • Patent number: 8173149
    Abstract: A porous ?-tricalcium phosphate material for bone implantation is provided. The multiple pores in the porous TCP body are separate discrete voids and are not interconnected. The pore size diameter is in the range of 20-500 ?m, preferably 50-125 ?m. The porous ?-TCP material provides a carrier matrix for bioactive agents and can form a moldable putty composition upon the addition of a binder. Preferably, the bioactive agent is encapsulated in a biodegradable agent. The invention provides a kit and an implant device comprising the porous ?-TCP, and a bioactive agent and a binder. The invention also provides an implantable prosthetic device comprising a prosthetic implant having a surface region, a porous ?-TCP material disposed on the surface region and optionally comprising at least a bioactive agent or a binder. Methods of producing the porous ?-TCP material and inducing bone formation are also provided.
    Type: Grant
    Filed: February 21, 2008
    Date of Patent: May 8, 2012
    Assignee: Stryker Corporation
    Inventors: Paresh S. Dalal, Godofredo R. Diamaano, Shailesh C. Kulkarni
  • Patent number: 8168431
    Abstract: A tissue engineering scaffold for cell, tissue or organ growth comprises a biocompatible porous polyurethane cellular material comprising a plurality of substantially spherical voids of diameter from 20 to 300 microns, preferably 80 to 200 microns, interconnected by generally elliptically shaped pores. The cellular material has a void content of from 85% to 98% and a surface area to volume of from 5 to 400 mm2/mm3, ideally from 20 to 80 mm2/mm3.
    Type: Grant
    Filed: November 14, 2008
    Date of Patent: May 1, 2012
    Assignee: Cellology Limited
    Inventors: Eamon Brady, Ann Marie Cannon, Fergal Farrell, Gerard McCaffrey
  • Patent number: 8168423
    Abstract: A device for detecting nitrosothiol content in a solution includes at least two electrodes disposed in a housing, wherein one of the at least two electrodes is a working electrode having a platinized tip and the other of the at least two electrodes is a counter electrode. A filter membrane is disposed at an end of the housing and is configured to come in contact with the solution. The filter membrane and at least a portion of the working electrode have a material coated thereon. The material includes a polymer and a source of copper dispersed within the material. The material and the platinized tip are configured to come into contact with the solution containing nitrosothiols to convert the nitrosothiols to nitric oxide in order to detect the nitrosothiol content.
    Type: Grant
    Filed: April 2, 2008
    Date of Patent: May 1, 2012
    Assignee: The Regents of The University of Michigan
    Inventors: Mark E. Meyerhoff, Wansik Cha