Patents Examined by David P Turocy
  • Patent number: 11972929
    Abstract: There is provided a processing apparatus for forming a film with a plasma. The processing apparatus comprises: a processing container, having a ceramic sprayed coating on an inner wall on which an antenna that radiates microwaves is arranged, configured to accommodate a substrate; a mounting table configured to mount the substrate in the processing container; and a controller configured to perform a precoating process of coating a surface of the ceramic sprayed coating with a first carbon film with a plasma of a first carbon-containing gas at a first pressure and a film forming process of forming a second carbon film on the substrate with a plasma of a second carbon-containing gas at a second pressure.
    Type: Grant
    Filed: August 7, 2020
    Date of Patent: April 30, 2024
    Assignee: Tokyo Electron Limited
    Inventors: Makoto Wada, Takashi Matsumoto, Masahito Sugiura, Ryota Ifuku, Hirokazu Ueda
  • Patent number: 11955318
    Abstract: A method for recovering ashing rate in a plasma processing chamber includes positioning a substrate in a processing volume of a processing chamber, wherein the substrate has a silicon chloride residue formed thereon. The method further includes evaporating the silicon chloride residue from the substrate. The method further includes depositing the evaporated silicon chloride on one or more interior surfaces in the processing volume. The method further includes exposing the deposited silicon chloride to an oxidizing environment to convert the deposited silicon chloride to a silicon oxide passivation layer. The oxidizing environment can comprise an oxygen-containing plasma, oxygen radicals, or a combination thereof.
    Type: Grant
    Filed: March 12, 2021
    Date of Patent: April 9, 2024
    Assignee: Applied Materials, Inc.
    Inventors: Yongkwan Kim, Changhun Lee, Kyeong-Tae Lee, Chung Hoan Kim, Youngmin Shin
  • Patent number: 11938475
    Abstract: In an example of the method, a functionalized coating layer is applied in depressions of a patterned flow cell substrate. The depressions are separated by interstitial regions. A primer is grafted to the functionalized coating layer to form a grafted functionalized coating layer in the depressions. A hydrogel is applied on at least the grafted functionalized coating layer.
    Type: Grant
    Filed: December 7, 2020
    Date of Patent: March 26, 2024
    Assignees: Ilumina, Inc., Illumina Cambridge Limited
    Inventors: Hongji Ren, Jonathan Mark Boutell, John A. Moon, M. Shane Bowen, Alex Nemiroski, Gary Mark Skinner, Kenny Chen
  • Patent number: 11932937
    Abstract: The invention relates to a method for producing a product, to a crucible and to the use of a layer of crystalline silicon nitride, the product being formed from a material consisting mainly of carbon or of a ceramic material, the product being coated with surface layer by chemical vapor deposition (CVD), wherein the product is coated with a surface layer of at least semi-crystalline, preferably crystalline silicon nitride (Si3N4), the surface layer being formed on the product at a process temperature of more than 1100° C. to 1700° C.
    Type: Grant
    Filed: March 1, 2018
    Date of Patent: March 19, 2024
    Assignee: SCHUNK KOHLENSTOFFTECHNIK GMBH
    Inventors: Karl Brennfleck, Johannes Galle, Dennis Muscutt, Volker Rauhut
  • Patent number: 11913111
    Abstract: A method of fabricating a polycrystalline CVD synthetic diamond wafer is disclosed. A first polycrystalline CVD synthetic diamond wafer is grown using a CVD process to a first thickness on a substrate. A second smaller wafer is cut from the polycrystalline CVD synthetic diamond wafer. The second smaller wafer is located on a carrier, and further polycrystalline CVD synthetic diamond material is grown on the second smaller wafer to a second thickness to give a polycrystalline CVD synthetic diamond material having a total thickness of the combined first and second thicknesses.
    Type: Grant
    Filed: March 26, 2020
    Date of Patent: February 27, 2024
    Assignee: Element Six Technologies Limited
    Inventors: Gruffudd Trefor Williams, Richard Stuart Balmer
  • Patent number: 11905599
    Abstract: A method and arrangement for manufacturing hot dip galvanized rolled high strength steel product is presented. The method comprises providing a rolled steel product, heating and annealing the rolled steel product for creating a layer of iron oxide on the surface of the rolled steel product, cooling the rolled steel product, having the iron oxide layer, in a first cooling step to a temperature in a temperature range of 560-600° C. and holding for 3-10 seconds, quenching said rolled steel product, covered with the layer of iron oxide, in a second cooling step by immersing it into a zinc bath comprising aluminium and having a temperature between 440-450° C. for 1-5 seconds and cooling the rolled steel product in a third cooling step to room temperature. An arrangement for implementing the method is also presented.
    Type: Grant
    Filed: December 10, 2020
    Date of Patent: February 20, 2024
    Assignee: Psitec Oy
    Inventor: Pertti Sippola
  • Patent number: 11885012
    Abstract: The invention relates to methods for the production of high quality graphene. In particular, the invention relates to single-step thermal methods which can be carried out in an ambient-air or vacuum environment using renewable biomass as a carbon source. Specifically, the invention comprises heating a metal substrate and carbon source in a sealed ambient environment to a temperature which produces carbon vapour from the carbon source such that the vapour comes into contact with the metal substrate, maintaining the temperature for a time sufficient to form a graphene lattice and then cooling the substrate at a controlled rate to form a deposited graphene.
    Type: Grant
    Filed: June 8, 2021
    Date of Patent: January 30, 2024
    Assignee: Commonwealth Scientific and Industrial Research Organization
    Inventors: Dong Han Seo, Shafique Pineda, Zhao Jun Han, Kostyantyn Ostrikov
  • Patent number: 11866816
    Abstract: An apparatus for use in a coating process includes a chamber, a crucible configured to hold a coating material in the chamber, an energy source operable to heat the interior of the chamber, a coating envelope situated with respect to the crucible, and at least one gas manifold located near the coating envelope. The at least one gas manifold is configured to provide a gas screen between the coating envelope and the crucible.
    Type: Grant
    Filed: March 18, 2019
    Date of Patent: January 9, 2024
    Assignee: RTX CORPORATION
    Inventors: Joseph A. DePalma, Mladen F. Trubelja, David A. Litton, Dmitri L. Novikov, Sergei F. Burlatsky
  • Patent number: 11859277
    Abstract: Methods of depositing a metal film are discussed. A metal film is formed on the bottom of feature having a metal bottom and dielectric sidewalls. Formation of the metal film comprises exposure to a metal precursor and an alkyl halide catalyst while the substrate is maintained at a deposition temperature. The metal precursor has a decomposition temperature above the deposition temperature. The alkyl halide comprises carbon and halogen, and the halogen comprises bromine or iodine.
    Type: Grant
    Filed: May 21, 2021
    Date of Patent: January 2, 2024
    Assignee: Applied Materials, Inc.
    Inventors: Xi Cen, Kai Wu, Seshadri Ganguli, Xinming Zhang, Norman L. Tam, Abhilash Mayur
  • Patent number: 11851755
    Abstract: A sequential infiltration synthesis apparatus comprising: a reaction chamber constructed and arranged to hold at least a first substrate; a precursor distribution and removal system to provide to and remove from the reaction chamber a vaporized first or second precursor; and, a sequence controller operably connected to the precursor distribution and removal system and comprising a memory provided with a program to execute infiltration of an infiltrateable material provided on the substrate when run on the sequence controller by: activating the precursor distribution and removal system to provide and maintain the first precursor for a first period T1 in the reaction chamber; activating the precursor distribution and removal system to remove a portion of the first precursor from the reaction chamber for a second period T2; and, activating the precursor distribution and removal system to provide and maintain the second precursor for a third period T3 in the reaction chamber.
    Type: Grant
    Filed: November 19, 2020
    Date of Patent: December 26, 2023
    Assignee: ASM IP Holding B.V.
    Inventors: Jan Willem Maes, Werner Knaepen, Krzysztof Kamil Kachel, David Kurt de Roest, Bert Jongbloed, Dieter Pierreux
  • Patent number: 11851742
    Abstract: The present invention provides a vapour deposition method for preparing an amorphous lithium borosilicate compound or doped lithium borosilicate compound, the method comprising: providing a vapour source of each component element of the compound, wherein the vapour sources comprise at least a source of lithium, a source of oxygen, a source of boron and a source of silicon, and, optionally, a source of at least one dopant element; providing a substrate at a temperature of less than about 180° C.; delivering a flow of said lithium, said oxygen, said boron and said silicon, and, optionally, said dopant element, wherein the rate of flow of said oxygen is at least about 8×10?8 m3/s; and co-depositing the component elements from the vapour sources onto the substrate wherein the component elements react on the substrate to form the amorphous compound.
    Type: Grant
    Filed: August 29, 2019
    Date of Patent: December 26, 2023
    Assignee: ILIKA TECHNOLOGIES LIMITED
    Inventors: Gianfranco Aresta, David Michael Laughman, Brian Elliott Hayden, Samuel Guerin
  • Patent number: 11836807
    Abstract: A method, system and network for prefabricating and constructing Class-A fire-protected wood-framed and mass timber buildings, while builders and owners are provided with knowledge of the quantity of carbon mass securely stored in Class-A fire-protected wood, represented by fire-protected carbon units (FPCUs), certified by the system and network. The network includes a system and mobile devices for estimating, recording and reporting the quantities of carbon mass securely stored in Class-A fire-protected wood-framed and mass-timber buildings on construction job-sites, and Class-A fire-protected wood-framed and mass timber components in factory environments, including engineered wood products (EWPs), mass timber assemblies and buildings constructed therefrom, whose quantized fire-protected carbon units (FPCUs) are also registered on the network for use in supporting various credits of value.
    Type: Grant
    Filed: July 9, 2018
    Date of Patent: December 5, 2023
    Assignee: MIGHTY FIRE BREAKER LLC
    Inventor: Stephen Conboy
  • Patent number: 11833846
    Abstract: Building panels, especially floor panels, and a method of forming embossed in register surfaces with a digital ink head that applies a curable ink on the panel surface or on an upper side of a foil as a coating and forms an ink matrix that is used to create a cavity in the surface by applying a pressure on the ink matrix.
    Type: Grant
    Filed: January 3, 2020
    Date of Patent: December 5, 2023
    Assignee: Ceraloc Innovation AB
    Inventors: Darko Pervan, Tony Pervan
  • Patent number: 11817295
    Abstract: A method of plasma processing includes performing a reactive species control phase, performing an ion/radical control phase, and performing a by-product control phase. The reactive species control phase includes pulsing source power to a processing chamber to generate ions and radicals in a plasma. The ion/radical control phase is performed after the reactive species control phase. The ion/radical control phase includes reducing the source power to the processing chamber and pulsing bias power to a substrate in the processing chamber. The by-product control phase is performed after the ion/radical control phase. The by-product control phase includes reducing the source power to the processing chamber relative to the reactive species control phase and reducing the bias power to the substrate relative to the ion/radical control phase.
    Type: Grant
    Filed: August 14, 2019
    Date of Patent: November 14, 2023
    Assignee: TOKYO ELECTRON LIMITED
    Inventors: Peter Ventzek, Alok Ranjan, Mitsunori Ohata
  • Patent number: 11817320
    Abstract: Implementations described herein generally relate to a method for forming a metal layer and to a method for forming an oxide layer on the metal layer. In one implementation, the metal layer is formed on a seed layer, and the seed layer helps the metal in the metal layer nucleate with small grain size without affecting the conductivity of the metal layer. The metal layer may be formed using plasma enhanced chemical vapor deposition (PECVD) and nitrogen gas may be flowed into the processing chamber along with the precursor gases. In another implementation, a barrier layer is formed on the metal layer in order to prevent the metal layer from being oxidized during subsequent oxide layer deposition process. In another implementation, the metal layer is treated prior to the deposition of the oxide layer in order to prevent the metal layer from being oxidized.
    Type: Grant
    Filed: August 29, 2019
    Date of Patent: November 14, 2023
    Assignee: Applied Materials, Inc.
    Inventors: Susmit Singha Roy, Kelvin Chan, Hien Minh Le, Sanjay Kamath, Abhijit Basu Mallick, Srinivas Gandikota, Karthik Janakiraman
  • Patent number: 11802339
    Abstract: A deposition apparatus comprises: an infeed chamber; a preheat chamber; a deposition chamber; and optionally at least one of a cooldown chamber and an outlet chamber. At least a first of the preheat chamber and the cooldown chamber contains a buffer system for buffering workpieces respectively passing to or from the deposition chamber.
    Type: Grant
    Filed: January 11, 2021
    Date of Patent: October 31, 2023
    Assignee: RTX Corporation
    Inventors: James W. Neal, David A. Litton, Brian T. Hazel, Michael J. Maloney, Eric M. Jorzik
  • Patent number: 11796390
    Abstract: A spectroscopic metrology system includes a spectroscopic metrology tool and a controller. The controller generates a model of a multilayer grating including two or more layers, the model including geometric parameters indicative of a geometry of a test layer of the multilayer grating and dispersion parameters indicative of a dispersion of the test layer. The controller further receives a spectroscopic signal of a fabricated multilayer grating corresponding to the modeled multilayer grating from the spectroscopic metrology tool. The controller further determines values of the one or more parameters of the modeled multilayer grating providing a simulated spectroscopic signal corresponding to the measured spectroscopic signal within a selected tolerance. The controller further predicts a bandgap of the test layer of the fabricated multilayer grating based on the determined values of the one or more parameters of the test layer of the fabricated structure.
    Type: Grant
    Filed: July 1, 2022
    Date of Patent: October 24, 2023
    Assignee: KLA Corporation
    Inventors: Tianhan Wang, Aaron Rosenberg, Dawei Hu, Alexander Kuznetsov, Manh Dang Nguyen, Stilian Pandev, John Lesoine, Qiang Zhao, Liequan Lee, Houssam Chouaib, Ming Di, Torsten R. Kaack, Andrei V. Shchegrov, Zhengquan Tan
  • Patent number: 11794247
    Abstract: There are provided reactive metal powder in-flight heat treatment processes. For example, such processes comprise providing a reactive metal powder; and contacting the reactive metal powder with at least one additive gas while carrying out said in-flight heat treatment process, thereby obtaining a raw reactive metal powder.
    Type: Grant
    Filed: January 28, 2022
    Date of Patent: October 24, 2023
    Assignee: AP&C Advanced Powders & Coatings, Inc.
    Inventors: Frédéric Larouche, Frédéric Marion, Matthieu Balmayer
  • Patent number: 11788185
    Abstract: A film formation method includes: providing a substrate including a first region in which a first material is exposed and a second region in which a second material different from the first material is exposed; forming an intermediate film selectively in the second region from the first region and the second region by supplying a processing gas to the substrate; forming a self-assembled monolayer in the first region and the second region after forming the intermediate film; removing the intermediate film and the self-assembled monolayer from the second region by heating the substrate to sublimate the intermediate film; and forming, after sublimation of the intermediate film, a target film selectively in the second region from the first region and the second region in a state in which the self-assembled monolayer is left in the first region.
    Type: Grant
    Filed: March 3, 2020
    Date of Patent: October 17, 2023
    Assignee: Tokyo Electron Limited
    Inventors: Shuji Azumo, Shinichi Ike, Yumiko Kawano
  • Patent number: 11778890
    Abstract: An organic layer deposition apparatus and a method of manufacturing an organic light-emitting display device by using the apparatus. In particular, an organic layer deposition apparatus that is more easily manufactured and is suitable for use in mass production of large substrates while performing high-definition patterning thereon, as well as a method of manufacturing an organic light-emitting display device by using such an apparatus.
    Type: Grant
    Filed: April 29, 2022
    Date of Patent: October 3, 2023
    Assignee: Samsung Display Co., Ltd.
    Inventors: Su-Hwan Lee, Un-Cheol Sung, Mu-Hyun Kim, Dong-Kyu Lee