Abstract: A unique double inversion buffer has a first means to invert and isolate the digital input signal, a second means to reinvert and further isolate the input signal, and an output means including an output transistor 94. The double inversion buffer is configured with active pull-down means on the output transistor 92. The high-to-low propagation delay time and the low-to-high propagation delay times through the double inversion buffer and reduced by use of the active pull-down means. Rapid turnoff of the output transistor is accomplished by coupling a transistor to its base to instantaneously turn it off. In a preferred embodiment, a clamping circuit 201 is used to hold the output voltage at a maximum predetermined level to further reduce the time it takes to reduce the output voltage to the logical "0" state.
Type:
Grant
Filed:
November 22, 1983
Date of Patent:
January 6, 1987
Assignee:
Monolithic Memories, Inc.
Inventors:
Gary Gouldsberry, Albert Chan, Cyrus Tsui, Mark Fitzpatrick
Abstract: A bipolar input circuit for regulating the current/voltage level at the base of a switching transistor (QA) provides a capacitively-controlled discharge path from the base through a discharge transistor (QC) when an input signal (V.sub.I) makes certain voltage transitions. The base of the switching transistor responds to the voltage at an emitter (E1) of an input transistor (QB) which has another emitter (E2) coupled to the base of the discharge transistor. Its base is further coupled to a capacitor (C) which controls the discharge path.
Abstract: A circuit for detecting a difference in the relative magnitudes of two voltages includes a current sensing circuit connected between the first voltage and ground to thereby cause a first current to flow in the current sensing circuit, an amplifier connected between the second voltage and ground and connected to the current sensing circuit to thereby cause a second current to flow, the second current being equal to the first current when the first voltage is equal to the second voltage, and a variable impedance inverter connected to the first voltage and connected to the amplifier, the variable impedance being controlled by the first voltage, the output of the inverter thereby being related to the difference between the first voltage and the second voltage. The invention is particularly useful for controlling a battery backup power supply in a microprocessor having a volatile memory and for creating precision delay circuits.