Patents Examined by Deborah Malamud
  • Patent number: 9044607
    Abstract: Among other things, enhancing spectral contrast for a cochlear implant listener includes detecting a time domain signal. A first transformation is applied to the detected time domain signal to convert the time domain signal to a frequency domain signal. A second transformation is applied to the frequency domain signal to express the frequency domain signal as a sum of two or more components. A sensitivity of the cochlear implant listener to detect modulation of each component is obtained.
    Type: Grant
    Filed: November 13, 2013
    Date of Patent: June 2, 2015
    Assignee: Advanced Bionics AG
    Inventors: Abhijit Kulkarni, Leonid M. Litvak, Aniket Saoji
  • Patent number: 9043001
    Abstract: Non-invasive electrical nerve stimulation devices and magnetic stimulation devices are disclosed, along with methods of treating medical disorders using energy that is delivered noninvasively by such devices. The disorders comprise migraine and other primary headaches such as cluster headaches, including sinus symptoms that resemble an immune-mediated response (“sinus” headaches), irrespective of whether those symptoms arise from an allergy that is co-morbid with the headache. The disclosed methods may also be used to treat other disorders that may be co-morbid with migraine headaches, such as anxiety disorders. In preferred embodiments of the disclosed methods, one or both of the patient's vagus nerves are stimulated non-invasively. In other embodiments, parts of the sympathetic nervous system and/or the adrenal glands are stimulated.
    Type: Grant
    Filed: September 16, 2013
    Date of Patent: May 26, 2015
    Assignee: Electrocore, LLC
    Inventors: Bruce J. Simon, Joseph P. Errico, John T. Raffle
  • Patent number: 9037261
    Abstract: A method of providing therapy to a patient having a disorder using an electrode located adjacent a peripheral target neural region. The method comprises conveying electrical stimulation energy from the electrode that stimulates a first set of nerve endings in the peripheral target neural region. The method further comprises increasing an activation threshold of a second set of nerve endings in the peripheral target neural region, thereby rendering the second set of nerve endings less excitable to the electrical stimulation energy. The first set of nerve endings are relatively far from the electrode and the second set of nerve endings are relatively near the electrode.
    Type: Grant
    Filed: February 25, 2014
    Date of Patent: May 19, 2015
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventor: Kerry Bradley
  • Patent number: 9031650
    Abstract: Various aspects of the present subject matter relate to a method. According to various method embodiments, cardiac activity is detected, and neural stimulation is synchronized with a reference event in the detected cardiac activity. Neural stimulation is titrated based on a detected response to the neural stimulation. Other aspects and embodiments are provided herein.
    Type: Grant
    Filed: January 7, 2011
    Date of Patent: May 12, 2015
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Aaron R. McCabe, Imad Libbus, Yi Zhang, Paul A. Haefner, Alok S. Sathaye, Anthony V. Caparso, M. Jason Brooke
  • Patent number: 9031665
    Abstract: An external controller/charger system for an implantable medical device is disclosed, in which the external controller/charger system provides automatic switching between telemetry and charging without any manual intervention by the patient. The external controller/charger system includes an external controller which houses a telemetry coil and an external charging coil coupled to the external controller. Normally, a charging session is carried out using the external charging coil, and a telemetry session is carried out using the telemetry coil. However, when a patient requests to carry out telemetry during a charging session, the external charging coil is used instead of the internal telemetry coil.
    Type: Grant
    Filed: May 13, 2013
    Date of Patent: May 12, 2015
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventor: Daniel Aghassian
  • Patent number: 9026219
    Abstract: A universal programming device for individualized patient medical devices such as implants has an RF transceiver (transmitter/receiver), a control unit, and a man-machine interface (or a connection for a man-machine interface). The RF transceiver is configured to receive and transmit data in the MICS frequency band. The control unit is connected to the transceiver and has preconfigured software interfaces, such that the programming device can be expanded by addition of control software modules. The preconfigured software interfaces define a uniform interface for triggering the transceiver, which the control software modules can access. The man-machine interface, e.g., a keyboard and/or a display (and/or the connection for such a man-machine interface) is connected to the control unit.
    Type: Grant
    Filed: November 4, 2009
    Date of Patent: May 5, 2015
    Assignee: BIOTRONIK CRM Patent AG
    Inventors: Thomas Doerr, Carsten Hennig, Joachim Elsner, Kai Hensen, Torsten Dodt
  • Patent number: 9020598
    Abstract: Non-invasive electrical nerve stimulation devices and magnetic stimulation devices are disclosed, along with methods of treating medical disorders using energy that is delivered noninvasively by such devices. The disorders comprise migraine and other primary headaches such as cluster headaches, including sinus symptoms that resemble an immune-mediated response (“sinus” headaches), irrespective of whether those symptoms arise from an allergy that is co-morbid with the headache. The disclosed methods may also be used to treat other disorders that may be co-morbid with migraine headaches, such as anxiety disorders. In preferred embodiments of the disclosed methods, one or both of the patient's vagus nerves are stimulated non-invasively. In other embodiments, parts of the sympathetic nervous system and/or the adrenal glands are stimulated.
    Type: Grant
    Filed: September 16, 2013
    Date of Patent: April 28, 2015
    Assignee: ElectroCore, LLC
    Inventors: Bruce J. Simon, Joseph P. Errico, John T. Raffle
  • Patent number: 9020582
    Abstract: Methods, systems, and apparatus for detecting and/or validating a detection of a state change by matching the shape of one or more of an cardiac data series, a heart rate variability data series, or at least a portion of a heart beat complex, derived from cardiac data, to an appropriate template.
    Type: Grant
    Filed: September 30, 2013
    Date of Patent: April 28, 2015
    Assignee: Flint Hills Scientific, LLC
    Inventors: Ivan Osorio, Mark G. Frei
  • Patent number: 9014804
    Abstract: An implantable medical device such as an implantable pulse generator that includes EEG sensing for monitoring and treating neurological conditions, and leadless ECG sensing for monitoring cardiac signals. The device includes a connector block with provisions for cardiac leads which may be used/enabled when needed. If significant co-morbid cardiac events are observed in patients via the leadless ECG monitoring, then cardiac leads may be subsequently connected for therapeutic use.
    Type: Grant
    Filed: June 10, 2011
    Date of Patent: April 21, 2015
    Assignee: Medtronic, Inc.
    Inventors: Jonathon E. Giftakis, Nina M. Graves, Jonathan C. Werder, Eric J. Panken
  • Patent number: 9014822
    Abstract: A pacing lead for a left cavity of the heart, implanted in the coronary system. This lead (24) includes a lead body with a hollow sheath (26, 28) of deformable material, having a central lumen open at both ends, and at least one telescopic microcable (42) of conductive material. The microcable slides along the length of the lead body and extends beyond the distal end (32) thereof. The party emerging beyond the distal end is an active free part (34) comprising a plurality of distinct bare areas (36, 38, 50, 50?, 50?), intended to come into contact (40) with the wall of a target vein (22) of the coronary system (14-22), so as to form a network of stimulation electrodes electrically connected together in parallel. The microcable further comprises, proximally, a connector to a generator of active implantable medical device such as a pacemaker or a resynchronizer.
    Type: Grant
    Filed: August 6, 2013
    Date of Patent: April 21, 2015
    Assignee: Sorin CRM S.A.S.
    Inventor: Jean-François Ollivier
  • Patent number: 9014823
    Abstract: Non-invasive electrical nerve stimulation devices and magnetic stimulation devices are disclosed, along with methods of treating medical disorders using energy that is delivered noninvasively by such devices. The disorders comprise migraine and other primary headaches such as cluster headaches, including sinus symptoms that resemble an immune-mediated response (“sinus” headaches), irrespective of whether those symptoms arise from an allergy that is co-morbid with the headache. The disclosed methods may also be used to treat other disorders that may be co-morbid with migraine headaches, such as anxiety disorders. In preferred embodiments of the disclosed methods, one or both of the patient's vagus nerves are stimulated non-invasively. In other embodiments, parts of the sympathetic nervous system and/or the adrenal glands are stimulated.
    Type: Grant
    Filed: September 16, 2013
    Date of Patent: April 21, 2015
    Assignee: ElectroCore, LLC
    Inventors: Bruce J. Simon, Joseph P. Errico, John T. Raffle
  • Patent number: 9002476
    Abstract: A biomedical conductor assembly adapted for at least partial insertion in a living body. The conductor assembly includes a plurality of the first electrical conductors each covered with an insulator and helically wound in a first direction to form an inner coil with a lumen. A plurality of second electrical conductors each including a plurality of un-insulated wires twisted in a ropelike configuration around a central axis to form a plurality of cables. Each cable is covered with an insulator and helically wound in a second opposite direction forming an outer coil in direct physical contact with the inner coil. The inner and outer coils are covered by an insulator. A method of making the conductor assembly and implanting a neurostimulation system is also disclosed.
    Type: Grant
    Filed: September 12, 2013
    Date of Patent: April 7, 2015
    Assignee: Greatbatch Ltd.
    Inventors: Jesse Geroy, John M. Swoyer
  • Patent number: 8996125
    Abstract: An implantable electroacupuncture device (IEAD) treats cardiovascular disease through application of stimulation pulses applied at at least one of acupoints EX-HN1, BL14, HT7, HT5, PC6, ST36, LI11, LU7 and LU2. The IEAD comprises an implantable, coin-sized, self-contained, leadless electroacupuncture device having at least two electrodes attached to an outside surface of its housing. The device generates stimulation pulses in accordance with a specified stimulation regimen. Power management circuitry within the device allows a primary battery, having a high internal impedance, to be used to power the device. The stimulation regimen generates stimulation pulses during a stimulation session of duration T3 minutes applied every T4 minutes. The duty cycle, or ratio T3/T4 is very low, no greater than 0.05. The low duty cycle and careful power management allow the IEAD to perform its intended function for several years.
    Type: Grant
    Filed: September 19, 2012
    Date of Patent: March 31, 2015
    Assignee: Valencia Technologies Corporation
    Inventors: Jeffrey H. Greiner, David K. L. Peterson, Chuladatta Thenuwara
  • Patent number: 8996127
    Abstract: Assessment of neuron excitation is implemented by quantifying the interaction between focused and unfocused stimulation applied to a cochlear array. By applying focused and unfocused stimulation to the electrode array and comparing the difference in the responses to the two types of stimulation the interaction may be determined. The magnitude of the interaction may be related to neural excitation and using this data a neural excitation profile may be determined.
    Type: Grant
    Filed: February 7, 2013
    Date of Patent: March 31, 2015
    Assignee: Cochlear Limited
    Inventors: Christopher van den Honert, Zachary Smith, Christopher J. Long, Daniel M. Lisogurski, Robert P. Carlyon
  • Patent number: 8977365
    Abstract: An electronic system activatable by electrical power is described. The system is useful for influencing cellular functions or malfunctions in a warm-blooded mammalian subject. The system includes one or more controllable low energy HF (High Frequency) carrier signal generator circuits, one or more data processors for receiving control information, one or more amplitude modulation control generators and one or more amplitude modulation frequency control generators. The amplitude modulation frequency control generators are adapted to accurately control the frequency of the amplitude modulations to within an accuracy of at least 1000 ppm, most preferably to within about 1 ppm, relative to one or more determined or predetermined reference amplitude modulation frequencies.
    Type: Grant
    Filed: August 22, 2012
    Date of Patent: March 10, 2015
    Assignee: TheraBionic, LLC
    Inventors: Boris Pasche, Alexandre Barbault
  • Patent number: 8968208
    Abstract: An apparatus and method for quantifying myocardial kinetics by positioning two sensors on a myocardial substrate site so that one sensor is directly opposing the other along a ventricular wall; tracking a relative displacement between the two sensors; and determining whether there is an infarct based on the tracked relative displacement.
    Type: Grant
    Filed: November 20, 2012
    Date of Patent: March 3, 2015
    Assignee: Pacesetter, Inc.
    Inventors: Allen Keel, Rupinder Bharmi, Stuart Rosenberg, Hedi Razavi
  • Patent number: 8972013
    Abstract: An implantable medical system includes an implantable medical device (IMD) and an electrode coupleable to the IMD. The electrode is operative to deliver a first electrical signal from the IMD to a neural structure. The system includes a sensor coupleable to the IMD. The sensor is operative to sense a physiological parameter. The physiological parameter may include at least one of a neurotransmitter parameter, a neurotransmitter breakdown product parameter, a neuropeptide parameter, a norepinephrine parameter, a glucocorticoid (GC) parameter, a neuromodulator parameter, a neuromodulator breakdown product parameter, an amino acid parameter, and a hormone parameter. The IMD includes a controller operative to change a parameter of the first electrical signal based upon at least one sensed physiological parameter to generate a second electrical signal and to apply the second electrical signal to the neural structure.
    Type: Grant
    Filed: March 25, 2011
    Date of Patent: March 3, 2015
    Assignee: Cyberonics, Inc.
    Inventor: Steven E. Maschino
  • Patent number: 8961390
    Abstract: A method of estimating the blood flow rate of a heart ventricle assist device which is positioned externally of, or implanted in, a patient. The assist device comprises a blood pump having a rapidly rotating, electrically powered impeller, and comprises briefly interrupting power to the impeller to cause its rotation to slow. From this, blood viscosity can be estimated, which viscosity is used to obtain real time, estimated blood flow rates and pressure heads. Apparatus for accomplishing this is disclosed.
    Type: Grant
    Filed: July 11, 2013
    Date of Patent: February 24, 2015
    Assignee: HeartWare, Inc.
    Inventors: Jeffrey LaRose, Udai Singh
  • Patent number: 8961506
    Abstract: Methods and systems for treating tissue that employ a radiometer for temperature measurements and use feedback from the radiometer to regulate energy being applied to the tissue are provided. For example, methods and systems are provided for calculating temperature based on signal(s) from a radiometer, which may provide useful information about tissue temperature at depth, and automatically regulating energy applied to the tissue based on the tissue temperature.
    Type: Grant
    Filed: May 9, 2014
    Date of Patent: February 24, 2015
    Assignees: Advanced Cardiac Therapeutics, Inc., Meridian Medical Systems, LLC
    Inventors: John McCarthy, Timothy J. Lenihan, Eric R. Kanowsky, Robert C. Allison
  • Patent number: 8958871
    Abstract: Methods and apparatus are provided for pulsed electric field neuromodulation via an intra-to-extravascular approach, e.g., to effectuate irreversible electroporation or electrofusion, necrosis and/or inducement of apoptosis, alteration of gene expression, changes in cytokine upregulation and other conditions in target neural fibers. In some embodiments, the ITEV PEF system comprises an intravascular catheter having one or more electrodes configured for intra-to-extravascular placement across a wall of patient's vessel into proximity with target neural fibers. With the electrode(s) passing from an intravascular position to an extravascular position prior to delivery of the PEF, a magnitude of applied voltage or energy delivered via the electrode(s) and necessary to achieve desired neuromodulation may be reduced relative to an intravascular PEF system having one or more electrodes positioned solely intravascularly.
    Type: Grant
    Filed: January 14, 2011
    Date of Patent: February 17, 2015
    Assignee: Medtronic Ardian Luxembourg S.a.r.l.
    Inventors: Denise Demarais, Benjamin J. Clark, Nicolas Zadno, Erik Thai, Hanson Gifford, III