Patents Examined by DeMaris R. Wilson
  • Patent number: 7421857
    Abstract: A process for fabricating glass art, comprising the steps of: (a) providing a first substrate and a second substrate, wherein each of the first and second substrates comprises an upper surface and a lower surface; (b) providing at least one wire, wherein the at least one wire comprises a first end, a second end, and a length therebetween; (c) associating the first end of the at least one wire with the lower surface of the first substrate and the upper surface of the second substrate; (d) heating the first and second substrates and the at least one wire from ambient temperature to an elevated temperature ranging from approximately 1,000 degrees Fahrenheit to approximately 2,000 degrees Fahrenheit over a period of time ranging from approximately 0.
    Type: Grant
    Filed: March 29, 2005
    Date of Patent: September 9, 2008
    Inventor: Karen Daniel
  • Patent number: 7415842
    Abstract: The present invention relates to a manufacturing method for an optical glass element, in which molten glass 9 is pressed between a lower mold 1 and an upper mold 8, and the pressing process is carried out while maintaining a space 10 between a border area (5, 6) of a molding face 2 belonging to the lower mold 1 and a circumferential face 3 located on the periphery thereof and glass 9, and an optical glass element manufactured by such a method.
    Type: Grant
    Filed: September 14, 2004
    Date of Patent: August 26, 2008
    Assignee: Konica Minolta Opto, Inc.
    Inventors: Tadafumi Sakata, Tadashi Sugiyama
  • Patent number: 7415843
    Abstract: In a method of manufacturing a glass optical element by press-forming a glass material in a chamber by using a forming mold comprising upper and lower dies at least one of which is movable, where a surrounded space is formed between the glass material and at least one of the upper and the lower dies when the upper and the lower dies come into contact with the glass material, a pressure within the chamber is reduced before the glass material placed in the forming mold is heated to a press-forming temperature. After sealing the space as formed when the glass material is in contact with at least one of forming surfaces of the upper and the lower dies, a gas is introduced into the chamber. The glass material is heated in the gas and then press-formed under a pressing load.
    Type: Grant
    Filed: February 11, 2005
    Date of Patent: August 26, 2008
    Assignee: Hoya Corporation
    Inventor: Yasuhiro Yoneda
  • Patent number: 7409838
    Abstract: A glassmelting furnace is heated by combustion of fuel having an atomic ratio of hydrogen to carbon of 0.9 or less.
    Type: Grant
    Filed: January 12, 2005
    Date of Patent: August 12, 2008
    Assignee: Praxair Technology, Inc.
    Inventor: Hisashi Kobayashi
  • Patent number: 7409839
    Abstract: In the formation of sheet glass by the overflow downdraw process, the width of usable sheet glass is maximized by downwardly flowing edge portions of the sheet over web-like members and thereafter over extensions which intersect with and are downwardly inclined relative to the web-like members to thin edge portions of the glass flow and maintain sheet width. The extension members are preferably removably attached to the web-like members, greatly facilitating replacement of the more easily damaged extension members.
    Type: Grant
    Filed: April 17, 2006
    Date of Patent: August 12, 2008
    Assignee: Corning Incorporated
    Inventors: Olus Naili Boratav, Steven Roy Burdette, David John Ulrich
  • Patent number: 7406841
    Abstract: The present invention relates to a process for producing a glass-ceramic with a defined zero crossing of the CTE-T curve (CTE: coefficient of thermal expansion), and glass-ceramic products produced using the process according to the invention.
    Type: Grant
    Filed: June 29, 2005
    Date of Patent: August 5, 2008
    Assignee: Schott Glas
    Inventor: Ina Mitra
  • Patent number: 7395679
    Abstract: Molten glass is press-molded by a metallic die in which a cylindrical body is provided in a vertically standing manner at a central part of a bottom surface of a bottomed hole and a molding surface corresponding to a chamfering shape of an outer peripheral edge surface of a glass substrate is consecutively formed in an inner peripheral wall, and a glass substrate precursor provided with the chamfering shape axially consecutive on an outer peripheral surface thereof and a through hole formed at a central part thereof is thereby formed. The glass substrate precursor is cut perpendicular to an axial direction to be separated into respective glass substrates. Next, the respective glass substrates are subjected to a lapping process and a polishing process, if necessary, to produce a glass substrate as a final product. According to the manufacturing method, a glass substrate for information recording medium whose inner and outer peripheral edge surfaces are chamfered can be manufactured with an improved efficiency.
    Type: Grant
    Filed: March 14, 2005
    Date of Patent: July 8, 2008
    Assignee: Konica Minolta Opto, Inc.
    Inventors: Toshiharu Mori, Yousuke Yamaguchi, Shinji Sakai
  • Patent number: 7383702
    Abstract: Embodiments of the present invention provide a highly uniform low cost production worthy solution for manufacturing low propagation loss optical waveguides on a substrate. In one embodiment, the present invention provides a method of forming a PSG optical waveguide on an undercladding layer of a substrate that includes forming at least one silicate glass optical core on said undercladding layer using a plasma enhanced chemical vapor deposition process including a silicon source gas, an oxygen source gas, and a phosphorus source gas, wherein the oxygen source gas and silicon source gas have a ratio of oxygen atoms to silicon atoms greater than 20:1.
    Type: Grant
    Filed: June 5, 2006
    Date of Patent: June 10, 2008
    Assignee: Applied Materials, Inc.
    Inventors: Hichem M'Saad, Anchuan Wang, Sang Ahn
  • Patent number: 7383700
    Abstract: A system and a process for heat treatment of glass or other materials where fan air is blown into a heating chamber via propellant air fans and the chamber air is circulated. In order to achieve effective convection, the propellant air fans have cylindrical mixing sections. Additionally, resulting air swirls flow around the heating means which are located in the heating chamber.
    Type: Grant
    Filed: June 30, 2004
    Date of Patent: June 10, 2008
    Inventor: Wolfgang Erdmann
  • Patent number: 7383697
    Abstract: A method for molding an optical element by pressing a glass material in a mold, the method having the steps of: heating to soften the glass material outside a cavity of the mold; heating the mold; and pressing the glass material with the mold after putting the glass material into the cavity of the mold, wherein when the glass material is put into the mold a temperature of the glass material is in a range of (Tg×1.60) to (Tg×1.85)° C., and a temperature at an optical transfer surface of the mold is in a range of (Tg+50) to (Tg?70)° C., where Tg is the glass-transition temperature of the material.
    Type: Grant
    Filed: May 16, 2005
    Date of Patent: June 10, 2008
    Assignee: Konica Minolta Opto, Inc.
    Inventors: Shigeru Hosoe, Hiroshi Nagoya
  • Patent number: 7383698
    Abstract: A method of manufacturing glass melt and a method of manufacturing molded glass material by forming glass melt. In the method of manufacturing glass melt, the glass melt containing fluorine is prepared by melting glass raw materials and refining the resulting glass melt. The refining is conducted in a refining vat equipped with a flow inlet through which flows glass melt obtained by heating and melting the glass raw materials, and a flow outlet through which flows glass melt that has been refined, with the level of the glass melt being maintained in such a manner that the flow inlet and flow outlet remain beneath the surface of the glass melt and the glass melt does not contact external air. The method of manufacturing a molded glass material comprises the step of molding the glass melt produced by the above method.
    Type: Grant
    Filed: August 9, 2004
    Date of Patent: June 10, 2008
    Assignee: Hoya Corporation
    Inventors: Jun Ichinose, Kazuo Ogino, Hidetsugu Kato
  • Patent number: 7380418
    Abstract: A continuous glass forming system includes a forming room and at least one forming unit which is advanced successively through a first loading/unloading station, a first heating station, a first forming station, and a first cooling station which are provided within the forming room. The forming unit includes lower and upper mold units, and a sleeve member removably assembled between the lower and upper mold units. The lower and upper mold units have respective first and second forming faces to form a glass blank into a lens. The sleeve member has support faces to support respectively the glass blank and lens. A transfer device moves into or out of the forming room to load or unload the sleeve member into or from the forming unit.
    Type: Grant
    Filed: April 19, 2005
    Date of Patent: June 3, 2008
    Assignee: Asia Optical Co., Inc.
    Inventor: Meng-Kun Wang
  • Patent number: 7380417
    Abstract: A glass forming system includes a first rotating device disposed in a first processing station defining a reception region, a first heating region, a first transfer region and a first cooling region, and a second rotating device disposed in a second processing station defining a second transfer region, a second heating region, a forming region and a second cooling region. The second rotating device holds at least one forming unit and is turnable to move the forming unit between the regions of the second processing station. The first rotating device holds at least one sleeve member which is movable between the first and second rotating devices and mountable on the forming unit. The first rotating device is turnable to move the sleeve member between the regions of the second processing station.
    Type: Grant
    Filed: April 19, 2005
    Date of Patent: June 3, 2008
    Assignee: Asia Optical Co., Inc.
    Inventor: Meng-Kun Wang
  • Patent number: 7353666
    Abstract: A molding apparatus for molding a press-molded product by heating and softening a material and press-molding the material into a predetermined shape by the use of a mold, includes a pair of dies which form the mold, each of which comprises a molding surface facing with the other, and one of which is fixed to a structure member of the molding apparatus, driving means for moving the other die towards and away from the one die, heating means for heating the dies, detecting means for detecting the displacement of a part displaced by thermal deformation of the structure member, and a control section for calculating a correction value for a moving distance of the other die with reference to the result of detection by the detecting means and delivering an instruction to the driving means so as to move the other die in accordance with the moving distance corrected by the correction value.
    Type: Grant
    Filed: February 6, 2004
    Date of Patent: April 8, 2008
    Assignee: Hoya Corporation
    Inventors: Shinji Hada, Hiroyuki Sakai, Tadayuki Fujimoto
  • Patent number: 7353667
    Abstract: A neck ring guide for aligning neck ring sections in a glassware forming machine has a center body and a pair of spaced parallel runners coupled to the center body for receipt in guide slots in the neck ring sections. Keepers on the outboard sides of the runners retain the runners in the guide slots. Instead of keepers, the runners may be retained in the guide slots by roll pins on the neck ring sections engaged in retainer slots in the runners.
    Type: Grant
    Filed: January 3, 2005
    Date of Patent: April 8, 2008
    Assignee: Owens-Brockway Glass Container Inc.
    Inventor: Robin L. Flynn
  • Patent number: 7347067
    Abstract: A mold is disclosed which has a vertical front face having a glass object surface defined therein and a stepped vertical rear surface. The upper portion of the rear surface projects outwardly from the lower portion of the rear surface. The lower rear surface includes the top surface of two vertically spaced pairs of “T”s.
    Type: Grant
    Filed: November 10, 2005
    Date of Patent: March 25, 2008
    Assignee: Emhart Glass SA
    Inventor: F. Alan Fenton
  • Patent number: 7340923
    Abstract: A pressing plunger mechanism for a glassware forming machine has at least one pressing plunger which in normal operation can be moved axially in a reciprocating manner together with a pressing plunger receiver between an inoperative position and a pressing position. A piston rod of a piston is fastened to each pressing plunger receiver, which piston can be displaced in a cylinder of a pressing plunger holder. The pressing plunger holder can be moved axially in a reciprocating manner by a first drive and is connected in a non-rotatable manner to a threaded spindle. A nut which can be rotationally driven by the first drive is engaged with the threaded spindle and is coupled to a driven shaft of an angular gear. An input shaft of the angular gear can be rotationally driven by an electric servo motor of the first drive.
    Type: Grant
    Filed: May 3, 2003
    Date of Patent: March 11, 2008
    Assignee: Heye International GmbH
    Inventors: Hermann Bögert, Waldemar Kässner, Norbert Monden
  • Patent number: 7337633
    Abstract: The present invention relates to production of a flat glass, which can improve the surface smoothness of a flat glass in the moving direction and which prevents formation of stripes on the flat glass. A fixed bed 15 comprising a plurality of supports 12 arranged in such a state that they will not move at least in a direction in parallel with the moving direction of a glass ribbon 13, and having grooves 12B to let loose the steam generated by vaporization of a steam film forming agent formed between the respective supports 12, is used, and the amount of the steam let loose from the grooves is adjusted in accordance with the glass temperature distribution in the moving direction of the glass ribbon 13 which moves on the fixed bed 15.
    Type: Grant
    Filed: December 22, 2004
    Date of Patent: March 4, 2008
    Assignee: Asahi Glass Company, Limited
    Inventors: Yoshihiro Shiraishi, Motoichi Iga, Itsuo Matsumoto, Toru Kamihori
  • Patent number: 7325419
    Abstract: Embodiments of the present invention provide a highly uniform low cost production worthy solution for manufacturing low propagation loss optical waveguides on a substrate. In one embodiment, the present invention provides a method of forming a PSG optical waveguide on an undercladding layer of a substrate that includes forming at least one silicate glass optical core on said undercladding layer using a plasma enhanced chemical vapor deposition process including a silicon source gas, an oxygen source gas, and a phosphorus source gas, wherein the oxygen source gas and silicon source gas have a ratio of oxygen atoms to silicon atoms greater than 20:1.
    Type: Grant
    Filed: June 5, 2006
    Date of Patent: February 5, 2008
    Assignee: Applied Materials, Inc.
    Inventors: Hichem M'Saad, Anchuan Wang, Sang Ahn
  • Patent number: 7320230
    Abstract: A pushout mechanism includes a pusher finger assembly which utilizes air jets to facilitate the location of bottles with the pockets defined by the fingers. The air jets are defined by in a projecting post in an orifice member which can be quickly released from the arm of the finger. The location of the air jet can, accordingly, be quickly adjusted by substituting an orifice member having a shorter or longer post.
    Type: Grant
    Filed: November 7, 2005
    Date of Patent: January 22, 2008
    Assignee: Emhart Glass SA
    Inventor: Robert J. Lockhart