Abstract: A composite article has 1) a dry piezoelectric layer comprising a piezoelectric material, 2) a dry dielectric layer arranged contiguously with at least one of the opposing surfaces of the dry piezoelectric layer, and 3) a pair of non-electrically-connected co-planar patterned electrodes. The dry dielectric layer has essentially (a?) a dielectric material; and (b) particles having a Young's modulus that is different from the Young's modulus of the (a?) dielectric material by at least 10%.
Type:
Grant
Filed:
December 14, 2017
Date of Patent:
September 1, 2020
Assignee:
EASTMAN KODAK COMPANY
Inventors:
Roberta Dileo Benedict, Kurt D. Sieber, J. Lanny Tucker
Abstract: A microelectro-mechanical system (MEMS) device includes a support structure formed of printed circuit board (PCB) materials; and a piezoelectric transducer formed at the support structure. Further, a MEMS assembly is described which shows such a MEMS device mounted at a component carrier. Furthermore, a method for manufacturing such a MEMS device is described.
Type:
Grant
Filed:
January 21, 2017
Date of Patent:
September 1, 2020
Assignee:
AT&S Austria Technologie & Systemtechnik Aktiengesellschaft
Inventors:
Jonathan Silvano De Sousa, Nick Renaud-Bezot
Abstract: A flipping-capacitor rectifier circuit that enhances an output power of a piezoelectric energy harvester (PEH). The flipping-capacitor rectifier circuit includes a flipping capacitor, a plurality of switches, and an active rectifier. The flipping capacitor is connected in parallel with the PEH and forms at least three reconfiguration phases by turning on one or more of the switches. The active rectifier connects with the flipping capacitor in parallel and rectifies an AC voltage of the PEH. The flipping capacitor flips a voltage across a capacitor of the PEH to enhance the output power of the PEH by extracting power from the capacitor of the PEH.
Type:
Grant
Filed:
November 24, 2017
Date of Patent:
August 25, 2020
Assignee:
UNIVERSITY OF MACAU
Inventors:
Zhiyuan Chen, Man-Kay Law, Pui-In Mak, Rui Paulo da Silva Martins
Abstract: An electronic device that includes a housing and a piezoelectric sensor. The piezoelectric sensor is disposed in contact with an inner wall surface of the housing while in a bent state. The piezoelectric sensor includes a piezoelectric film, a coverlay, a first electrode, a second electrode, a third electrode, and a substrate having flexibility. The first electrode is disposed on a surface of the substrate. The first electrode includes a wide part and a narrow part. The coverlay covers a boundary between the wide part and the narrow part. The piezoelectric film covers a boundary between a part of the first electrode which is covered with the coverlay and a part of the first electrode which is not covered with the coverlay.
Type:
Grant
Filed:
September 5, 2017
Date of Patent:
August 25, 2020
Assignee:
MURATA MANUFACTURING CO., LTD.
Inventors:
Takashi Kihara, Yoshihiro Yamaguchi, Jun Endo
Abstract: A piezoelectric film having a porosity between 20 and 40%, a thickness ranging from tens of microns to less than a few millimeters can be used to form an ultrasonic transducer UT for operation in elevated temperature ranges, that emit pulses having a high bandwidth. Such piezoelectric films exhibit greater flexibility allowing for conformation of the UT to a surface, and obviate the need for couplings or backings. Furthermore, a method of fabricating an UT having these advantages as well as better bonding between the piezoelectric film and electrodes involves controlling porosity within the piezoelectric film.
Abstract: An integrated module of acoustic wave device with active thermal compensation comprises a substrate, an acoustic wave filter, an active adjustment circuit and at least one variable capacitance device. The acoustic wave filter comprises a plurality of series acoustic wave resonators formed on the substrate, at least one shunt acoustic wave resonator formed on the substrate and a thermal sensing acoustic wave resonator. Each of the variable capacitance device is connected in parallel to one of the series and shunt acoustic wave resonators. The active adjustment circuit outputs an active thermal compensation signal correlated to a thermal variation sensed by the thermal sensing acoustic wave resonator to the variable capacitance device. The active thermal compensation signal induces a capacitance variation of the variable capacitance device such that the impact of the thermal variation to the acoustic wave device is compensated.
Type:
Grant
Filed:
June 27, 2017
Date of Patent:
August 25, 2020
Assignee:
WIN SEMICONDUCTORS CORP.
Inventors:
Re Ching Lin, Shu Hsiao Tsai, Cheng Kuo Lin, Chih-Feng Chiang, Fan Hsiu Huang, Tung-Yao Chou
Abstract: A piezoelectric element includes a piezoelectric body, a first electrode, a second electrode, a third electrode, and a first through hole conductor. The piezoelectric body includes first and second main surfaces opposing each other, and first and second end surfaces opposing each other. The first electrode is disposed on the first main surface. The second electrode is disposed apart from the first electrode on the first main surface. The third electrode is disposed in the piezoelectric body to oppose the first electrode. The first through hole conductor is connected to the second and third electrodes. The piezoelectric body includes an active region and an inactive region. The active region includes a region from the first electrode to the third electrode. The inactive region includes a region from the third electrode to the second main surface.
Abstract: A piezoelectric transducer comprises a piezoelectric element operable to transduce mechanical movement of the piezoelectric element to an electrical signal and to transduce an electrical signal in the piezoelectric element to a mechanical movement thereof, wherein the piezoelectric transducer is operable to transduce above a temperature of 200° C.
Type:
Grant
Filed:
February 5, 2016
Date of Patent:
August 4, 2020
Assignee:
Ionix Advanced Technologies Ltd
Inventors:
Timothy James Stevenson, Timothy Paul Alistair Comyn
Abstract: An acoustic resonator including a substrate, an active vibration region including, sequentially stacked on the substrate, a lower electrode, a piezoelectric layer, and an upper electrode, and a horizontal resonance suppressing part formed from and disposed in the piezoelectric layer, the horizontal resonance suppressing part having piezoelectric physical properties that are different from piezoelectric physical properties of the piezoelectric layer.
Type:
Grant
Filed:
December 27, 2016
Date of Patent:
July 21, 2020
Assignee:
Samsung Electro-Mechanics Co., Ltd.
Inventors:
Tae Hun Lee, Won Han, Moon Chul Lee, Sung Han
Abstract: A piezoelectric vibration component that includes a substrate having a principal surface and a side face, a piezoelectric vibrator, a lid, and an adhesive layer that hermetically seals the piezoelectric vibrator in a space between the lid and the principal surface. The adhesive layer extends from the principal surface to at least a portion of the side face of the substrate.
Abstract: A piezoelectric device includes a base, a piezoelectric vibrating piece, and a cover. The base has a depressed portion and a bank portion. The piezoelectric vibrating piece is housed within the depressed portion. The cover is bonded on a top surface of the bank portion of the base with a sealing metal. The top surface of the base has an inclined surface that inclines down toward an inside of the base in a direction along a width direction of the bank portion or an inclined surface that inclines down toward an outside of the base in the direction along the width direction of the bank portion.
Abstract: An acoustic wave device includes a support substrate, a piezoelectric laminate, and first and second interdigital transducer electrodes. The piezoelectric laminate includes an intermediate layer provided directly or indirectly on the support substrate and a piezoelectric thin film provided on the intermediate layer. The first and second interdigital transducer electrodes are provided on the piezoelectric thin film of the piezoelectric laminate so as to be disposed in an identical or substantially identical plane. In the piezoelectric laminate, a thickness of a portion where the first interdigital transducer electrode is provided is different from a thickness of a portion where the second interdigital transducer electrode is provided.
Abstract: A film transducer has a holding part, an electroactive composite structure which includes at least one deformable carrier and at least two electrodes arranged on opposite sides of the deformable carrier, and a load application member which is mounted to the composite structure. The holding part engages two ends of the composite structure facing away from each other and the load application member is arranged between the two ends of the composite structure.
Type:
Grant
Filed:
August 4, 2016
Date of Patent:
June 16, 2020
Assignee:
BUERKERT WERKE GMBH
Inventors:
Cricia De Carvalho Rodegheri, Marcel Konstandin, Peter Krippner, Stefan Seelecke, Marc Hill
Abstract: A resonator element includes: a substrate; and an electrode that includes a first conductive layer provided on a surface of the substrate, and a second conductive layer, provided on the opposite side to the first conductive layer on the substrate side, which is disposed within an outer edge of the first conductive layer when seen in a plan view from a direction perpendicular to the surface.
Abstract: A SAW device includes a SAW element, a conductor connected to the SAW element, an LT substrate including the SAW element, and a case for housing the LT substrate including the SAW element. The case includes a cover part, a lateral part, and a bottom part. The bottom part is including a sapphire substrate, the LT substrate is positioned on a first surface of the sapphire substrate, the first surface serving as an inner surface of the case, and a second surface opposite to the first surface serves as an outer surface of the case. The conductor includes a via conductor provided in a through-hole continuously penetrating through the sapphire substrate and the LT substrate.
Abstract: An amplifying radiofrequency device includes a piezoelectric film and a semiconductor amplifier layer. The piezoelectric film is conformed as an acoustic waveguide. The piezoelectric film has a principal acoustic propagation direction parallel to the principal conduction direction of the amplifier layer. Interdigitated transducers are positioned on the piezoelectric film to respectively launch an acoustic wave in response to an input RF signal, and transduce the acoustic wave back to an output RF signal. There is a distance of less than the acoustic wavelength between the semiconductor amplifier layer and the piezoelectric film. The piezoelectric film has a thickness of less than the acoustic wavelength. According to a method for making such a device, a stack of III-V layers is epitaxially grown on a III-V substrate, wherein the stack comprises a first etch stop layer, a second etch stop layer, an amplifier layer, and a contact layer. The stack is bonded to a lithium niobate film.
Type:
Grant
Filed:
September 28, 2017
Date of Patent:
May 26, 2020
Inventors:
Matt Eichenfield, Roy Olsson, Anna Tauke-Pedretti, Andrew Leenheer, Aleem Siddiqui, Thomas A. Friedmann
Abstract: A piezoelectric sensor comprises a microcontroller, a plurality of piezoelectric sensor elements of which at least two are useable for producing a haptic signal by a voltage (HV) generated by a boost converter connected to each piezoelectric sensor element, and connected to a piezo channel of the microcontroller. A multiplexer individually controls each of the switches if an enable a signal is present. The microcontroller is configured to use each of the piezo channels as a sensor channel for reading sensor input from the respective piezoelectric sensor element and in response to detecting a sensor input in at least one of the piezo channels to set the enable signal at the increase voltage pin and/or the enable signal pin, and to set a signal to at least one piezo channel in which the sensor input was detected.
Abstract: The embodiments herein relate to surface acoustic wave (SAW) devices, such as filters and duplexers. The SAW device may have a high acoustic velocity layer and a piezoelectric layer coupled to the high acoustic velocity layer. At least one transducer is coupled at least to the piezoelectric layer, where the transducer propagates a surface acoustic wave having an operating wavelength along a surface of the piezoelectric layer. A metallic layer may be coupled to the surface of the piezoelectric layer and electrically isolated from the transducer.
Abstract: A piezoelectric actuator includes a vibrating plate having a piezoelectric material, and a contact part provided in an end portion of the vibrating plate in contact with a driven part, wherein the contact part has a first portion in contact with the driven part and a second portion provided between the first portion and the vibrating plate and having lower rigidity than the first portion. Further, a width of the second portion in a direction crossing an arrangement direction of the first portion and the second portion is smaller than a width of the first portion in the crossing direction.
Abstract: A piezoelectric drive apparatus for a motor, the apparatus including a substrate having a longitudinal direction and a widthwise direction perpendicular to the longitudinal direction, a piezoelectric element provided on the substrate and having a first electrode, a second electrode, and a piezoelectric body positioned between the first electrode and the second electrode, and a contact section that is attached to a front end section of the substrate in the longitudinal direction thereof or in contact with the front end section of the substrate in the longitudinal direction thereof and comes into contact with a driven body, wherein the longitudinal direction of the substrate roughly coincides with a direction in which Young's modulus is minimized in a plane of the substrate.