Patents Examined by Derrick G. Hamlin
  • Patent number: 7094743
    Abstract: The present invention involves a composition comprising a fluorochemical compound, an agent to impart gloss, and water, and a wipe containing this composition. The composition and wipe are preferably used for cleaning, protecting and imparting gloss to a substrate, such as natural or artificial leather.
    Type: Grant
    Filed: July 29, 2003
    Date of Patent: August 22, 2006
    Assignee: 3M Innovative Properties Company
    Inventors: Stephane Thioliere, Mitchell T. Johnson, Dominique Rolly
  • Patent number: 7070709
    Abstract: Disclosed are dust suppressant and aggregate stabilization compositions. In accordance with the subject disclosure, hemicellulose is used as a dust suppressant and/or as a stabilization composition for aggregates such as a road bed or soil field. Other ingredients may be used in a composition in conjunction with hemicellulose. For instance, a lignin compound may be used to enhance dust suppression and/or aggregate stabilization. A surfactant may be used to decrease the viscosity of the composition. A crosslinking agent may be used to enhance the water resistance of the composition. A chloride salt may be added to increase the hygroscopicity of the composition.
    Type: Grant
    Filed: July 1, 2003
    Date of Patent: July 4, 2006
    Assignee: Grain Processing Corporation
    Inventors: Kevin H. Schilling, Dan Freeman, Roger E. McPherson
  • Patent number: 7022266
    Abstract: A composition for use in the production of metal traces and other metal components of printed circuit boards, wiring boards and the like. The composition includes the following components: (a) a metal powder, (b) a solder powder, (c) a polymer or a monomer which is polymerisable to yield a polymer, wherein the polymer is cross-likable under the action of a chemical cross-linking agent, and (d) a chemical cross-linking agent for the polymer, the cross-linking agent having fluxing properties and being unreactive with the polymer without catalysis. The polymer will generally be an epoxy resin and the cross-linking agent will generally be a polyacid. The composition preferably is one in which the metal powder and/or solder powder generates and/or has adhered thereto a catalyst for the cross-linking agent which is liberated on application of heat.
    Type: Grant
    Filed: August 15, 1997
    Date of Patent: April 4, 2006
    Assignee: Dow Corning Corporation
    Inventor: Hugh P. Craig
  • Patent number: 6902689
    Abstract: The invention encompasses epoxies, epoxy systems, and methods of forming conductive adhesive connections between electrical nodes. An epoxy contains: a) a liquid mixture of a hardener and a base epoxy; and b) a concentration of an ionic salt within the liquid mixture, the concentration of the ionic salt being high enough that a 15 mil length sample of the liquid mixture having cross-sectional dimensions of 50 mil by 2 mil would have a resistance of less than about 100 ohms along its length.
    Type: Grant
    Filed: April 26, 2001
    Date of Patent: June 7, 2005
    Assignee: Micron Technology, Inc.
    Inventors: Rickie C. Lake, Krishna Kumar
  • Patent number: 6896718
    Abstract: Moisture is removed from gas by contacting the gas with a solution of potassium formate to remove moisture from the gas, regenerating the potassium formate solution by removing water from it, and returning the potassium formate solution to contact gas to dehydrate it. Regeneration of the potassium formate solution is most preferably accomplished in a cavitation regenerator. The gas is most preferably natural gas.
    Type: Grant
    Filed: August 24, 2001
    Date of Patent: May 24, 2005
    Assignee: Clearwater International LLC
    Inventor: John H. Hallman
  • Patent number: 6797010
    Abstract: The present invention relates to the inhibition of backstaining or redeposition during the stonewashing process by applying a lipolytic enzyme, preferably cutinase, thereby avoiding that the blue color redeposits on the fabric or garment.
    Type: Grant
    Filed: August 8, 2001
    Date of Patent: September 28, 2004
    Assignee: Novozymes A/S
    Inventors: Naoto Uyama, Kosaku Daimon
  • Patent number: 6783693
    Abstract: Hydraulic fluids, in particular brake fluids for motor vehicles, comprising from 0.01 to 50 wt % of one or more cyclic carboxylates, or cyclic carboxamides, which can carry a linear or branched C1-bis C20 alkyl group on the nitrogen atom.
    Type: Grant
    Filed: October 18, 2001
    Date of Patent: August 31, 2004
    Assignee: BASF Aktiengesellschaft
    Inventors: Bayram Aydin, Uwe Fidorra, Arthur Höhn, Ladislaus Meszaros, Jan Nouwen, Knut Oppenländer, Michael Roida, Michael Stösser, Bernd Wenderoth
  • Patent number: 6773635
    Abstract: Materials, both glass and glass-ceramic, that exhibit UV-induced changes in light transmission and electrical conductivity behavior. The materials consist essentially, in mole %, of 20-40% SiO2, 10-20% AlO1.5, 35-55% SiO2+AlO1.5, at least 30% CdF2, 0-20% PbF2, and/or ZnF2, 0-15% rare earth metal fluoride, and 45-65% total metal fluorides.
    Type: Grant
    Filed: February 26, 2001
    Date of Patent: August 10, 2004
    Assignee: Corning Incorporated
    Inventors: Nicholas F. Borrelli, Lauren K. Cornelius, Dennis W. Smith, Paul A. Tick
  • Patent number: 6773632
    Abstract: The present invention is directed toward an enhanced very high volt electrolyte for use in electrolytic capacitors. In particular, by the inclusion of a polymer matrix of a hydrogel, preferably of the family of poly(hydroxy alkyl methacrylate) but also including polyvinylalcohol (PVA), polyacrylonitrile (PAN), into a standard fill electrolyte, the breakdown voltage of the enhanced very high volt electrolyte of the present invention is raised to as much as 800 V. An electrolytic capacitor impregnated with the enhanced very high volt electrolyte of the present invention, is capable of operating at a voltage of 700 to 800 volts. The production of a very high volt capacitor capable of operating at a voltage of 700 to 800 volts allows a single high volt electrolytic capacitor to replace the conventional two capacitors-in-series arrangement of an Implantable Cardioverter Defibrillator (ICD).
    Type: Grant
    Filed: May 17, 2001
    Date of Patent: August 10, 2004
    Assignee: Pacesetter, Inc.
    Inventors: Timothy R. Marshall, Thomas F. Strange
  • Patent number: 6733687
    Abstract: In general, this invention relates to supplemental coolant additive for use in cooling systems, for example, in diesel engine cooling systems. The supplemental coolant additive includes a C4-C6 dicarboxylic acid, preferably adipic acid, and optionally a C9-C12 aliphatic dicarboxylic acid an aromatic monocarboxylic acid, an aromatic dicarboxylic acid and salts of these acids. The supplemental coolant additive also can include a variety of other additives including molybdate salts, nitrate salts, nitrite salts, silicate salts and buffering agents. The supplemental coolant additive is preferably provided as a solid additive or a liquid concentrate. The supplemental coolant additive is preferably added to the liquid coolant over time to provide increased coolant life. Further the supplemental coolant additive provides enhanced anti-corrosion protection in cooling systems that include hard water.
    Type: Grant
    Filed: July 6, 2000
    Date of Patent: May 11, 2004
    Assignee: Fleetguard, Inc.
    Inventor: R. Douglas Hudgens
  • Patent number: 6726857
    Abstract: The present invention comprises a mixture of hydrocarbons having a well-defined chemical composition that is suitable for use as a dielectric coolant in electrical equipment in general, and specifically in transformers. The dielectric coolants of the present invention are particularly suited for use in sealed, non-vented transformers, and have improved performance characteristics, including decreased degradation of the paper insulating layers, as well as a greater degree of safety and environmental acceptability. The present dielectric coolants comprise relatively pure blends of compounds selected from the group consisting of aromatic hydrocarbons, polyalphaolefins, polyol esters, and natural vegetable oils, along with additives to improve pour point, increase stability and reduce oxidation rate.
    Type: Grant
    Filed: November 25, 2002
    Date of Patent: April 27, 2004
    Assignee: Cooper Industries, Inc.
    Inventors: Gary L. Goedde, Gary A. Gauger, John Lapp, Alan P. Yerges
  • Patent number: 6706076
    Abstract: The present invention relates to a method for electrically coalescing emulsions especially those containing lipophilic fluid. The present invention is also directed to a method to treat fabrics wherein such an emulsion is created during the treatment process and requires electric coalescence prior to reuse of the lipophilic fluid.
    Type: Grant
    Filed: May 4, 2001
    Date of Patent: March 16, 2004
    Assignee: Procter & Gamble Company
    Inventors: John Christopher Deak, Paul Amaat France, Anna Vadimovna Noyes, Arseni V. Radomyselski
  • Patent number: 6679999
    Abstract: A magnetorheological fluid formulation exhibiting consistently high yield stress during use. The MR fluid comprises martensitic or ferritic stainless steel particles prepared by a controlled water or inert gas atomization process. The stainless steel particles are resistant to corrosion and oxidation, are generally smooth and spherical, and maintain their shape and size distribution throughout their use under an applied magnetic field.
    Type: Grant
    Filed: March 13, 2001
    Date of Patent: January 20, 2004
    Assignee: Delphi Technologies, Inc.
    Inventors: Vardarajan R. Iyengar, Robert T. Foister, James C. Johnson
  • Patent number: 6676848
    Abstract: Corrosion protection of magnesium and aluminum alloys in engine coolants and heat-exchange fluids is achieved by the use of a select group of aliphatic and aromatic carboxylate acids or the alkaline metal, ammonium or amine salts thereof in combination with a fluoride and/or a fluorocarboxylic acid or salt thereof. These compositions have been found to significantly improve the high temperature magnesium corrosion protection properties of coolants, and are of use in automobile engine coolant systems.
    Type: Grant
    Filed: November 15, 2001
    Date of Patent: January 13, 2004
    Assignees: Texaco Inc., Texaco Development Corporation
    Inventors: Jean-Pierre Leopold Maes, Serge Stefan Lievens
  • Patent number: 6676710
    Abstract: A process for treating a textile substrate, the process including the steps of providing a textile substrate; providing a treatment bath; entraining a transport material in the treatment bath wherein the transport material further comprises a treatment material dissolved or suspended therein and wherein the transport material is substantially immiscible with the treatment bath; and contacting the textile substrate with the transport material in the treatment bath to thereby treat the textile substrate with the treatment material in the transport material.
    Type: Grant
    Filed: December 4, 2000
    Date of Patent: January 13, 2004
    Assignee: North Carolina State University
    Inventors: Carl Brent Smith, Walter A. Hendrix, Donald L. Butcher
  • Patent number: 6673274
    Abstract: The invention provides dielectric compositions and methods of forming the same. The dielectric compositions may be used to form dielectric layers in electronic devices such as multilayer ceramic capacitors (MLCCs) and, in particular, MLCCs which include base metal electrodes. The dielectric compositions include a barium titanate-based material and several dopants. The type and concentration of each dopant is selected to provide the dielectric composition with desirable electrical properties including a stable capacitance over a temperature range, a low dissipation factor, and a high capacitance. Preferably, MLCCs including dielectric layers formed with the composition satisfy X7R and/or X5R requirements.
    Type: Grant
    Filed: April 11, 2001
    Date of Patent: January 6, 2004
    Assignee: Cabot Corporation
    Inventors: Sridhar Venigalla, Dorran L. Schultz
  • Patent number: 6669872
    Abstract: An electrical oil having reduced gassing tendency includes a major amount of a paraffinic or naphthenic basestock and a blend of certain hindered phenols, especially a blend of 2,6-di-t-butyl phenol and 2,6-di-t-butyl cresol. A further enhanced gassing tendency can be provided to the electrical oil by including a tolyltriazole derivative.
    Type: Grant
    Filed: July 13, 2001
    Date of Patent: December 30, 2003
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Christopher Jeffrey Still Kent, Jacob B. Angelo
  • Patent number: 6669870
    Abstract: A Cu(hfac) precursor with a substituted phenylethylene ligand has been provided. The substituted phenylethylene ligand includes bonds to molecules selected from the group consisting of C1 to C6 alkyl, C1 to C6 haloalkyl, C1 to C6 phenyl, H and C1 to C6 alkoxyl. One variation, the &agr;-methylstyrene ligand precursor has proved to be stable a low temperatures, and sufficiently volatile at higher temperatures. Copper deposited with this precursor has low resistivity and high adhesive characteristics. A synthesis method has been provided which produces a high yield of the above-described precursor.
    Type: Grant
    Filed: March 28, 2001
    Date of Patent: December 30, 2003
    Assignee: Sharp Laboratories of America, Inc.
    Inventors: Wei-Wei Zhuang, Tue Nguyen, Lawrence J. Charneski, David R. Evans, Sheng Teng Hsu
  • Patent number: 6663796
    Abstract: The present invention relates to a solid electrolytic capacitor comprising an electrode produced by forming a solid electrolytic layer comprised by a polymer having at least one repeating unit selected from a thiophene-diyl skeleton, an isothianaphthene-diyl skeleton, a pyrrole-diyl skeleton, a furan-diyl skeleton and an iminophenylene skeleton and having a fibril structure on a dielectric film layer of a porous valve-acting metal and its production method, and to a highly electroconductive polymer obtained by chemical oxidative polymerization of a monomer and an oxidizing agent at an interface and its production method.
    Type: Grant
    Filed: September 8, 1999
    Date of Patent: December 16, 2003
    Assignee: Showa Denko K.K.
    Inventors: Hideki Ohata, Koro Shirane, Ryuji Monden, Atsushi Sakai
  • Patent number: 6656381
    Abstract: The rate of water vapor sorption of an absorption cycle cooling and/or heating system using an aqueous alkali metal halide solution as the working fluid is increased by adding to the fluid an effective additive amount of at least 2 parts per million of an aliphatic, cycloaliphatic, or aromatic ketone or aldehyde capable of increasing the rate of water vapor absorption.
    Type: Grant
    Filed: September 28, 2001
    Date of Patent: December 2, 2003
    Assignee: Rocky Research
    Inventors: Travis Chandler, Uwe Rockenfeller