Patents Examined by Diana C Vieira
  • Patent number: 11978776
    Abstract: An apparatus includes a non-planar semiconductor body; and a contact for the semiconductor body. The contact includes an epitaxial material that is formed on and contacts the semiconductor body. The contact includes a second material that is formed on and contacts the epitaxial material; and the second material at least partially conforms to an undercut of the epitaxial material.
    Type: Grant
    Filed: December 12, 2016
    Date of Patent: May 7, 2024
    Assignee: Intel Corporation
    Inventors: Ashutosh Sagar, Sridhar Govindaraju
  • Patent number: 11955408
    Abstract: An integrated circuit semiconductor device includes a substrate including a first surface and a second surface opposite the first surface, a trench in the substrate, the trench extending from the first surface of the substrate toward the second surface of the substrate, a through silicon via (TSV) landing part in the trench, the TSV landing part having a first portion spaced apart from the first surface of the substrate, and a second portion between the first portion and the first surface of the substrate, the first portion being wider than the second portion, a TSV hole in the substrate, the TSV hole extending from the second surface of the substrate and aligned with a bottom surface of the TSV landing part, and a TSV in the TSV hole and in contact with the bottom surface of the TSV landing part.
    Type: Grant
    Filed: September 29, 2020
    Date of Patent: April 9, 2024
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Sohye Cho, Pilkyu Kang, Kwangjin Moon, Taeseong Kim
  • Patent number: 11942417
    Abstract: A device includes a sensor die having a sensing region at a top surface of the sensor die, an encapsulant at least laterally encapsulating the sensor die, a conductive via extending through the encapsulant, and a front-side redistribution structure on the encapsulant and on the top surface of the sensor die, wherein the front-side redistribution structure is connected to the conductive via and the sensor die, wherein an opening in the front-side redistribution structure exposes the sensing region of the sensor die, and wherein the front-side redistribution structure includes a first dielectric layer extending over the encapsulant and the top surface of the sensor die, a metallization pattern on the first dielectric layer, and a second dielectric layer extending over the metallization pattern and the first dielectric layer.
    Type: Grant
    Filed: May 4, 2020
    Date of Patent: March 26, 2024
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Yung-Chi Chu, Sih-Hao Liao, Po-Han Wang, Yu-Hsiang Hu, Hung-Jui Kuo
  • Patent number: 11881546
    Abstract: A device with a light-emitting diode includes a substrate, a first conductive pad and a second conductive pad, a light-emitting diode, a metal protrusion, a polymer layer, and a top electrode. The substrate has a top surface. The first conductive pad and the second conductive pad are on the substrate. The light-emitting diode is on the first conductive pad. The metal protrusion is on the second conductive pad. The polymer layer covers the top surface of the substrate, the first conductive pad, the second conductive pad, the metal protrusion, and the light-emitting diode, in which a distance from a top of the metal protrusion to the top surface of the substrate is greater than a thickness of the polymer layer. The top electrode covers the light-emitting diode, the polymer layer, and the metal protrusion such that the light-emitting diode is electrically connected with the second conductive pad.
    Type: Grant
    Filed: December 5, 2019
    Date of Patent: January 23, 2024
    Assignee: MIKRO MESA TECHNOLOGY CO., LTD.
    Inventor: Li-Yi Chen
  • Patent number: 11776894
    Abstract: A semiconductor chip includes a device layer on a substrate, the device layer including a plurality of semiconductor devices; a wiring structure and a lower inter-wiring dielectric layer each on the device layer, the lower inter-wiring dielectric layer surrounding the wiring structure and having a lower permittivity than silicon oxide; an upper inter-wiring dielectric layer arranged on the lower inter-wiring dielectric layer; an isolation recess arranged along an edge of the substrate, the isolation recess formed on side surfaces of the lower and upper inter-wiring dielectric layers and having a bottom surface at a level equal to or lower than that of a bottom surface of the lower inter-wiring dielectric layer; and a cover dielectric layer covering the side surfaces of the lower and upper inter-wiring dielectric layers and the bottom surface of the isolation recess.
    Type: Grant
    Filed: April 14, 2020
    Date of Patent: October 3, 2023
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Yeonjin Lee, Junyong Noh, Minjung Choi, Junghoon Han, Yunrae Cho
  • Patent number: 11756876
    Abstract: A semiconductor device includes a base, source, drain and gate electrodes, signal tracks and a power mesh. The source, drain and gate electrodes are arranged on a surface of the base, wherein the gate electrodes are extended along a first direction. The signal tracks arranged above the first surface of the base and above the source and drain electrodes and the gate electrodes, wherein the signal tracks are extended along the first directions. A power mesh is arranged below the first surface of the base, the power mesh comprising first power rails extended in the second direction and second power rails extended in a first direction, wherein the second direction is substantially perpendicular to the first direction.
    Type: Grant
    Filed: April 1, 2020
    Date of Patent: September 12, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LTD.
    Inventors: Wei-An Lai, Wei-Cheng Lin, Jiann-Tyng Tzeng
  • Patent number: 11742357
    Abstract: A display device includes a substrate, pixels on the substrate, pads, and test lines. The pads are between the pixels and an edge of the substrate and include a first pad and a second pad. The test lines include a first test line and a second test line. The first test line includes a first section and a second section. The second section is closer to the edge of the substrate than the first section and is connected through the first section to the first pad. The second test line includes a first segment and a second segment. The second segment is closer to the edge of the substrate than the first segment and is connected through the first segment to the second pad. A minimum distance between the first section and the first segment is larger than a minimum distance between the second section and the second segment.
    Type: Grant
    Filed: November 15, 2019
    Date of Patent: August 29, 2023
    Assignee: Samsung Display Co., Ltd.
    Inventors: Hyun Seop Song, Seung Jae Kang, Yeon-Sung Kim, Po-Yun Park, Bong Chun Park, Il Hyun Yang
  • Patent number: 11610959
    Abstract: An organic light-emitting display device comprises a display panel having a transmission area through which external light passes, and a non-transmission area having transmittance lower than that of the transmission area; a data driver supplying a data signal to the display panel; a gate driver supplying a gate signal to the display panel; a timing controller controlling the data driver and the gate driver; and a sensor package module disposed on a rear surface of the display panel and disposed to correspond to the transmission area, wherein the number of conductive films stacked in the transmission area is smaller than that of conductive films stacked in the non-transmission area.
    Type: Grant
    Filed: December 11, 2019
    Date of Patent: March 21, 2023
    Assignee: LG DISPLAY CO., LTD.
    Inventors: JongHee Hwang, BuYeol Lee, EunJung Kim
  • Patent number: 11437333
    Abstract: A packaged semiconductor device includes a lead frame and a semiconductor device. A solder joint is coupled between the lead frame and a terminal on the semiconductor device. A reflow wall is on a portion of the lead frame and is in contact with the solder joint. A molding compound covers portions of the semiconductor device, the lead frame, the solder joint, and the reflow wall.
    Type: Grant
    Filed: December 13, 2017
    Date of Patent: September 6, 2022
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Vikas Gupta, Daniel Yong Lin
  • Patent number: 11289403
    Abstract: A multi-layer substrate includes: a first insulating layer; a conductor layer that is provided on an upper surface of the first insulating layer and that has a penetrating portion; a second insulating layer that covers the conductor layer and that is stacked on the upper surface of the first insulating layer; a via hole that penetrates the second insulating layer from an upper surface of the second insulating layer to reach an inside of the first insulating layer and that includes the penetrating portion; and an insulating member with which the via hole is filled. The conductor layer has a portion exposed in the via hole, and the insulating member covers an upper surface and a lower surface of the conductor layer exposed in the via hole through the penetrating portion of the conductor layer.
    Type: Grant
    Filed: December 27, 2019
    Date of Patent: March 29, 2022
    Assignee: SHINKO ELECTRIC INDUSTRIES CO., LTD.
    Inventors: Misaki Komatsu, Katsuya Fukase
  • Patent number: 11201094
    Abstract: A method of fabricating an integrated circuit (IC) structure, includes forming a gate trench that exposes a portion of each of a plurality of fins and forming a threshold voltage (Vt) tuning dielectric layer in the gate trench over the plurality of fins. Properties of the Vt tuning dielectric layer are adjusted during the forming to achieve a different Vt for each of the plurality of fins. The method also includes forming a glue metal layer over the Vt tuning dielectric layer; and forming a fill metal layer over the glue metal layer. The fill metal layer has a substantially uniform thickness over top surfaces of the plurality of fins.
    Type: Grant
    Filed: April 1, 2019
    Date of Patent: December 14, 2021
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Lung-Kun Chu, Mao-Lin Huang, Wei-Hao Wu
  • Patent number: 11043529
    Abstract: Photonic devices monolithically integrated with CMOS are disclosed, including sub-100 nm CMOS, with active layers comprising acceleration regions, light emission and absorption layers, and optional energy filtering regions. Light emission or absorption is controlled by an applied voltage to deposited films on a pre-defined CMOS active area of a substrate, such as bulk Si, bulk Ge, Thick-Film SOI, Thin-Film SOI, Thin-Film GOI.
    Type: Grant
    Filed: December 17, 2014
    Date of Patent: June 22, 2021
    Assignee: Quantum Semiconductor LLC
    Inventor: Carlos J. R. P. Augusto
  • Patent number: 11011531
    Abstract: Disclosed are memory structures and methods for forming such structures. An example method forms a vertical string of memory cells by forming an opening in interleaved tiers of dielectric tier material and nitride tier material, forming a charge storage material over sidewalls of the opening and recesses in the opening to form respective charge storage structures within the recesses. Subsequently, and separate from the formation of the floating gate structures, at least a portion of the remaining nitride tier material is removed to produce control gate recesses, each adjacent a respective charge storage structure. A control gate is formed in each control gate recess, and the control gate is separated from the charge storage structure by a dielectric structure. In some examples, these dielectric structures are also formed separately from the charge storage structures.
    Type: Grant
    Filed: March 16, 2016
    Date of Patent: May 18, 2021
    Assignee: Micron Technology, Inc.
    Inventor: Luan C. Tran
  • Patent number: 10971468
    Abstract: Processes for automatic registration between a solid circuit die and electrically conductive interconnects, and articles or devices made by the same are provided. The solid circuit die is disposed on a substrate with contact pads aligned with channels on the substrate. Electrically conductive traces are formed by flowing a conductive liquid in the channels toward the contact pads to obtain the automatic registration.
    Type: Grant
    Filed: November 16, 2017
    Date of Patent: April 6, 2021
    Assignee: 3M INNOVATIVE PROPERTIES COMPANY
    Inventors: Ankit Mahajan, Mikhail L. Pekurovsky, Matthew S. Stay, Daniel J. Theis, Ann M. Gilman, Shawn C. Dodds, Thomas J. Metzler, Matthew R. D. Smith, Roger W. Barton, Joseph E. Hernandez, Saagar A. Shah, Kara A. Meyers, James Zhu, Teresa M. Goeddel, Lyudmila A. Pekurovsky, Jonathan W. Kemling, Jeremy K. Larsen, Jessica Chiu, Kayla C. Niccum
  • Patent number: 10930623
    Abstract: A micro-transfer printable electronic component includes one or more electronic components, such as integrated circuits or LEDs. Each electronic component has device electrical contacts for providing electrical power to the electronic component and a post side. A plurality of electrical conductors includes at least one electrical conductor electrically connected to each of the device electrical contacts. One or more electrically conductive connection posts protrude beyond the post side. Each connection post is electrically connected to at least one of the electrical conductors. Additional connection posts can form electrical jumpers that electrically connect electrical conductors on a destination substrate to which the printable electronic component is micro-transfer printed. The printable electronic component can be a full-color pixel in a display.
    Type: Grant
    Filed: November 5, 2018
    Date of Patent: February 23, 2021
    Assignee: X Display Company Technology Limited
    Inventors: Ronald S. Cok, Christopher Bower, Matthew Meitl, Carl Prevatte, Jr.
  • Patent number: 10818749
    Abstract: A semiconductor device includes a plurality of drift regions of a plurality of field effect transistor structures arranged in a semiconductor substrate. The plurality of drift regions has a first conductivity type. The semiconductor device further includes a plurality of compensation regions arranged in the semiconductor substrate. The plurality of compensation regions has a second conductivity type. Each drift region of the plurality of drift regions is arranged adjacent to at least one compensation region of the plurality of compensation regions. The semiconductor device further includes a Schottky diode structure or metal-insulation-semiconductor gated diode structure arranged at the semiconductor substrate.
    Type: Grant
    Filed: December 9, 2016
    Date of Patent: October 27, 2020
    Assignee: Infineon Technologies AG
    Inventors: Anton Mauder, Wolfgang Bergner, Jens Peter Konrath, Dethard Peters, Reinhold Schoerner
  • Patent number: 10475739
    Abstract: A semiconductor device is provided. The semiconductor device includes a substrate comprising a lower wire, an etch stop layer on the substrate, an interlayer insulating layer on the etch stop layer, an upper wire disposed in the interlayer insulating layer and separated from the lower wire and a via formed in the interlayer insulating layer and the etch stop layer and connecting the lower wire with the upper wire, wherein the via comprises a first portion in the etch stop layer and a second portion in the interlayer insulating layer, and wherein a sidewall of the first portion of the via increases stepwise.
    Type: Grant
    Filed: December 13, 2017
    Date of Patent: November 12, 2019
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Woo Kyung You, Eui Bok Lee, Jong Min Baek, Su Hyun Bark, Jang Ho Lee, Sang Hoon Ahn, Hyeok Sang Oh
  • Patent number: 10460647
    Abstract: A display device with a narrow bezel is provided. The display device includes a pixel circuit and a driver circuit provided on one plane. The driver circuit includes a selection circuit and a buffer circuit. The buffer circuit includes a first transistor and a second transistor. Sources of the first and second transistors are electrically connected with each other. Drains of the first and second transistors are electrically connected with each other. Gates of the first and second transistors are electrically connected with each other. The first transistor and the second transistor are stacked so that the direction of the current flow in the first transistor is parallel to that in the second transistor.
    Type: Grant
    Filed: July 5, 2017
    Date of Patent: October 29, 2019
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventor: Hideaki Shishido
  • Patent number: 10418350
    Abstract: A multi-layer semiconductor device includes at least a first semiconductor structure and a second semiconductor structure, each having first and second opposing surfaces. The second semiconductor structure includes a first section and a second section, the second section including a device layer and an insulating layer. The second semiconductor structure also includes one or more conductive structures and one or more interconnect pads. Select ones of the interconnect pads are electrically coupled to select ones of the conductive structures. The multi-layer semiconductor device additionally includes one or more interconnect structures disposed between and coupled to select portions of second surfaces of each of the first and second semiconductor structures. A corresponding method for fabricating a multi-layer semiconductor device is also provided.
    Type: Grant
    Filed: August 11, 2015
    Date of Patent: September 17, 2019
    Assignee: Massachusetts Institute of Technology
    Inventors: Rabindra N. Das, Donna-Ruth W. Yost, Chenson Chen, Keith Warner, Steven A. Vitale, Mark A. Gouker, Craig L. Keast
  • Patent number: 10403556
    Abstract: A semiconductor device includes a drift structure formed in a semiconductor body. The drift structure forms a first pn junction with a body zone of a transistor cell. A gate structure extends from a first surface of the semiconductor body into the drift structure. A heat sink structure extends from the first surface into the drift structure. A thermal conductivity of the heat sink structure is greater than a thermal conductivity of the gate structure and/or a thermal capacity of the heat sink structure is greater than a thermal capacity of the gate structure.
    Type: Grant
    Filed: December 16, 2016
    Date of Patent: September 3, 2019
    Assignee: Infineon Technologies AG
    Inventors: Johannes Georg Laven, Peter Irsigler, Joachim Mahler, Guenther Ruhl, Hans-Joachim Schulze, Markus Zundel