Patents Examined by Dibson J Sanchez
  • Patent number: 10507063
    Abstract: An optical tracking system includes at least one tracking array for generating and optically transmitting data between 1 and 2,000 MB/s. At least one tracker for optically receiving the optically transmitted data between 1 and 2,000 MB/s is also provided. The tracking system is used not only for tracking objects and sending tracking information quickly but also providing the user or other components in an operating room with additional data relevant to an external device such as a computer assisted device. Orthopedic surgical procedures such as total knee arthroplasty (TKA) are performed more efficiently and with better result with the optical tracking system.
    Type: Grant
    Filed: November 23, 2015
    Date of Patent: December 17, 2019
    Assignee: Think Surgical, Inc.
    Inventors: Joel Zuhars, Saleh Tabandeh
  • Patent number: 10505661
    Abstract: A hybrid multiplexing apparatus is provided for multiplexing a digital communication signal from an electrical domain with one or more analog subcarrier communication signals from the electrical domain into a multiplexed optical signal for transmission over a common optical communication link. The apparatus comprises a laser module configured to modulate a laser source with the one or more analog subcarrier communication signals to be multiplexed, and output an intermediate optical modulated signal. An electro-optical modulator is coupled to receive the intermediate optical modulated signal and the digital communication signal to be multiplexed, and configured to modulate the intermediate optical modulated signal with the digital communication signal to form the multiplexed optical signal.
    Type: Grant
    Filed: January 25, 2016
    Date of Patent: December 10, 2019
    Assignee: Telefonaktiebolaget LM Ericsson (publ)
    Inventors: Luca Giorgi, Filippo Ponzini
  • Patent number: 10499125
    Abstract: A scalable AWGR-based optical packet switch, called TASA (short for TDM ASA), is presented in this invention. The switch is a modified version of the ASA switch but does not have its drawbacks. The total port count is N2 and each port can transmit up to N packets of different wavelengths simultaneously. This makes the total capacity of the switch close to (N3×bandwidth of one wavelength channel). But a TASA switch differs from an ASA switch in two major ways. First, a TASA switch does not need an electronic scheduler. This removes a potential bottleneck in the design of an optical packet switch. Second, it can handle any kind of unbalanced loads and can tolerate faults. These qualities, however, are missing in an ASA switch.
    Type: Grant
    Filed: December 14, 2016
    Date of Patent: December 3, 2019
    Inventor: Chin-Tau Lea
  • Patent number: 10498479
    Abstract: The present invention relates to adding and dropping signals in a node of an optical network, wherein the node includes a reconfigurable optical add/drop multiplexer (ROADM). The reconfigurable optical add/drop multiplexer (ROADM) comprises output ports and at least one add port connectable to at least one line interface of the network and adapted to receive a modulated optical signal from the line interface. Selection units are connected to one of said add ports and adapted to forward the respective signals to a selected output terminal. A plurality of broadcast units is adapted to broadcast signals forwarded by the selection. Then a multiplexing and selecting device or apparatus selects and multiplexes the optical signals broadcast via broadcast unit output terminals into a plurality of wavelength-division multiplexing (WDM) optical signals and forwards the same to output ports of the reconfigurable optical add-drop multiplexer (ROADM).
    Type: Grant
    Filed: August 18, 2015
    Date of Patent: December 3, 2019
    Assignee: Xieon Networks S.à.r.l.
    Inventor: Robert Schimpe
  • Patent number: 10498455
    Abstract: This invention relates to an emitter for an optical communication system such as a Li-Fi system. This emitter comprises an M-PAM modulator and a conversion module to convert an M-PAM symbol into a plurality of logical outputs. It also comprises a plurality of branches in parallel, each branch comprising a switched current source mounted in series with the optical source, each switched current source being controlled by a logical output from the conversion module.
    Type: Grant
    Filed: June 12, 2018
    Date of Patent: December 3, 2019
    Assignee: COMMISSARIAT A L'ENERGIE ATOMIQUE ET AUX ENERGIES ALTERNATIVES
    Inventors: Luc Maret, Marc Laugeois, Xavier Popon
  • Patent number: 10491321
    Abstract: An optical demultiplexer has at least one unit circuit formed by three AMZs having a same arm length difference and cascaded in a tree structure in which two output ports of the 1st AMZ are connected to the 2nd AMZ and the 3rd AMZ, respectively, wherein the unit circuit has first and second monitors connected to the first and second output ports of the 2nd AMZ, and third and fourth monitors connected to the first and second output ports of the 3rd AMZ, a first control circuit controlling the transmissivity of the 1st AMZ so as to increase the monitoring result of the second and fourth monitors, a second control circuit controlling the transmissivity of the 2nd AMZ to decrease the monitoring result of the first monitor, and a third control circuit controlling the transmissivity of the 3rd AMZ to decrease the monitoring result of the third monitor.
    Type: Grant
    Filed: January 23, 2019
    Date of Patent: November 26, 2019
    Assignees: FUJITSU LIMITED, PHOTONICS ELECTRONICS TECHNOLOGY RESEARCH ASSOCIATION
    Inventor: Tomoyuki Akiyama
  • Patent number: 10491305
    Abstract: A system for embedding phase and amplitude into a real valued unipolar signal suitable for intensity modulation (IM) by optical transmitters. The system includes a complex-to-unipolar conversion engine configured to receive complex symbols in Cartesian format and convert the complex symbols from the Cartesian format to a polar coordinate format and generate real valued unipolar symbols including embedded phase and amplitude information of complex symbols in the Cartesian format.
    Type: Grant
    Filed: March 3, 2015
    Date of Patent: November 26, 2019
    Assignee: Trustees of Boston University
    Inventors: Hany Elgala, Thomas D. C. Little
  • Patent number: 10491307
    Abstract: There is provided an optical transmitter including a memory, a processor coupled to the memory and the processor to generate an electric signal, an optical generator to generate light, an optical modulator to modulate the light with the electric signal to create an optical signal, a first voltage electrode to apply a first voltage to the optical signal, a second voltage electrode to apply a second voltage to the optical signal to which the first voltage is applied, and a detector to detect an optical power of the optical signal to which the second voltage is applied, wherein the processor stops generating the electric signal, controls the first voltage electrode to change the first voltage after the stop of generating the electric signal, and controls the second voltage electrode to change the second voltage according to the detected optical power after the change of the first voltage.
    Type: Grant
    Filed: May 11, 2017
    Date of Patent: November 26, 2019
    Assignee: FUJITSU LIMITED
    Inventors: Shuzo Matsushita, Taku Saito, Kosuke Komaki, masamichi sugamoto, Hironobu Hongou
  • Patent number: 10469170
    Abstract: Provided are an optical transceiver, an optical transmitter IC, and an optical receiver IC, which can be applied to both a case of coding an optical signal and a case of decoding an optical signal, and can suppress an influence of waveform degradation with an inexpensive circuit. The optical transceiver includes an optical transmitter, an optical receiver, and at least any one of: a first delay circuit included in the optical transmitter and configured to delay an input first multi-level digital signal by a delay time corresponding to an amplitude level of the first multi-level digital signal; and a second delay circuit included in the optical receiver and configured to delay an input second multi-level digital signal by a delay time corresponding to an amplitude level of the second multi-level digital signal.
    Type: Grant
    Filed: July 26, 2017
    Date of Patent: November 5, 2019
    Assignee: Lumentum Japan, Inc.
    Inventor: Nobuhiko Kikuchi
  • Patent number: 10454572
    Abstract: Data center interconnections, which encompass WSCs as well as traditional data centers, have become both a bottleneck and a cost/power issue for cloud computing providers, cloud service providers and the users of the cloud generally. Fiber optic technologies already play critical roles in data center operations and will increasingly in the future. The goal is to move data as fast as possible with the lowest latency with the lowest cost and the smallest space consumption on the server blade and throughout the network. Accordingly, it would be beneficial for new fiber optic interconnection architectures to address the traditional hierarchal time-division multiplexed (TDM) routing and interconnection and provide reduced latency, increased flexibility, lower cost, lower power consumption, and provide interconnections exploiting N×M×D Gbps photonic interconnects wherein N channels are provided each carrying M wavelength division signals at D Gbps.
    Type: Grant
    Filed: March 10, 2015
    Date of Patent: October 22, 2019
    Assignee: Aeponyx Inc.
    Inventors: Francois Menard, Martin Berard
  • Patent number: 10444452
    Abstract: There is provided an optical module, including a first optical subassembly, a second optical subassembly, a first flexible printed circuit board, and a second flexible printed circuit board. The first/second optical subassembly includes a first/second normal phase lead terminal and a first/second reverse phase lead terminal, arranged in a positive direction of a first orientation. The first/second flexible printed circuit board includes a first/second normal phase strip conductor, a first/second reverse phase strip conductor, and a ground conductor layer. The back surface of the first/second flexible printed circuit board faces the end surface of the first/second optical subassembly. The first/second normal phase strip conductor extends in a positive/negative direction of a second orientation.
    Type: Grant
    Filed: December 13, 2017
    Date of Patent: October 15, 2019
    Assignee: Lumentum Japan, Inc.
    Inventor: Daisuke Noguchi
  • Patent number: 10447420
    Abstract: Embodiments include methods and apparatuses for providing at least one signaling indication of a super-channel by a power controller in a Wavelength Division Multiplexing (WDM) system. The power controller may receive a service provisioning and a lock state from a network management entity. The power controller may receive, from an optical fabric unit, a fabric state that indicates whether a pass-band of the super-channel is provisioned. The power controller may receive the power level of the super-channel from a power monitoring unit. Based on the power level and attenuation level of the super-channel, the power controller may determine a ramp state that indicates whether the power level reached to a predetermined power. The power controller may determine an alarm state based on the power level. The power controller may determine the signaling indication based on the service provisioning, lock, fabric, ramp, and alarm states.
    Type: Grant
    Filed: June 5, 2017
    Date of Patent: October 15, 2019
    Assignee: Infinera Corporation
    Inventors: Rajan Rao, Nikhil Kumar Satyarthi, Parveen Kumar Gupta, Sowmya Mahadevaiah, Sanjeev Ramachandran, Baranidhar Ramanathan, Ramakrishnan Subramanian
  • Patent number: 10439730
    Abstract: A method and device is provided for reducing optical transmission impairments, particularly nonlinear effects, of at least one link Said method comprising the following steps: extracting a phase information (??) from an optical signal (120) received via that at least one link, determining a nonlinear coefficient (?), associated with the at least one link, based on the phase information (??), applying a control mechanism (202) using the nonlinear coefficient (?). Furthermore, a communication system is suggested comprising said device.
    Type: Grant
    Filed: May 12, 2014
    Date of Patent: October 8, 2019
    Assignee: Xieon Networks S.à.r.l.
    Inventors: Antonio Napoli, Chien-Yu Lin, Bernhard Spinnler, Vincentius Antonius Johannes Mar Sleiffer
  • Patent number: 10432307
    Abstract: Aspects of the present disclosure describe systems, methods, and structures for free-space optical communications using Hermite-Gaussian modes resulting in advantageous performance over prior art systems particularly with respect to lateral misalignment.
    Type: Grant
    Filed: July 27, 2018
    Date of Patent: October 1, 2019
    Assignee: NEC Corporation
    Inventor: Giovanni Milione
  • Patent number: 10404397
    Abstract: A wavelength division multiplexed telecommunication system with automatic compensation of chromatic dispersion in a predetermined wavelength band, said WDM telecommunication system comprising a probe signal detection unit at a receiver side adapted to detect amplitude modulated probe signals generated by a probe signal generation unit at a transmitter side with a predetermined relative phase difference and transmitted through an optical link to said receiver side; and a chromatic dispersion compensation unit adapted to compensate the chromatic dispersion in response to a relative phase difference of the amplitude modulated probe signals detected by said probe signal detection unit at the receiver side.
    Type: Grant
    Filed: December 23, 2015
    Date of Patent: September 3, 2019
    Assignee: ADVA OPTICAL NETWORKING SE
    Inventors: Mohammad Alfiad, Fuerst Cornelius, Sorin Tibuleac, Christophe Meyer
  • Patent number: 10401582
    Abstract: There is provided an optical module, including a first optical subassembly, a second optical subassembly, a first flexible printed circuit board, and a second flexible printed circuit board. The first/second optical subassembly includes a first/second normal phase lead terminal and a first/second reverse phase lead terminal, arranged in a positive direction of a first orientation. The first/second flexible printed circuit board includes a first/second normal phase strip conductor, a first/second reverse phase strip conductor, and a ground conductor layer. The back surface of the first/second flexible printed circuit board faces the end surface of the first/second optical subassembly. The first/second normal phase strip conductor extends in a positive/negative direction of a second orientation.
    Type: Grant
    Filed: December 13, 2017
    Date of Patent: September 3, 2019
    Assignee: Lumentum Japan, Inc.
    Inventor: Daisuke Noguchi
  • Patent number: 10367596
    Abstract: A multiple wavelength selective switch has an optics assembly to receive a first input optical signal from a first ingress port and a second input optical signal from a second ingress port. A switch assembly has a single switching mechanism to direct the first input optical signal to the optics assembly as a first output optical signal and the second input optical signal to the optics assembly as a second output optical signal. The switch assembly directs the first output optical signal to a first egress port selected from the first set of egress ports and directs the second output optical signal to a second egress port selected from the second set egress ports. The first egress port and the second egress port have the same wavelength channel. The multiple wavelength selective switch supports an arbitrary number of wavelength channels that can be switched at the same time. Each switch assembly directs signals from a set of ingress ports to a set of egress ports sharing the same wavelength channel.
    Type: Grant
    Filed: May 22, 2018
    Date of Patent: July 30, 2019
    Assignee: II-VI Delaware, Inc.
    Inventors: Oliver Lu, Helen Chen, Gordon Jiang, Simon He, Lawrence Wang, Tom Li, Jim Yuan, Jack Kelly, Fenghua Li
  • Patent number: 10355786
    Abstract: In order to provide an optical modulator capable of controlling a bias voltage to correspond to transmission characteristics of a modulation means even when a multi-level modulation scheme is applied, an optical modulator 10 is provided with: an amplitude information control means 20that generates amplitude information for controlling the amplitude of an information signal to correspond to transmission characteristics of a modulation means 50, adds a dither signal to the amplitude information, and outputs the amplitude information; a bias value control means 30 that generates and outputs a bias value for controlling the center of the amplitude of the information signal to correspond to the transmission characteristics of the modulation means 50; a data output means 40 that corrects the amplitude of information data on the basis of the amplitude information, and outputs the information data as the information signal; the modulation means 50 that corrects the center of the amplitude of the information signal on
    Type: Grant
    Filed: September 15, 2016
    Date of Patent: July 16, 2019
    Assignee: NEC CORPORATION
    Inventor: Tadashi Koga
  • Patent number: 10326561
    Abstract: An optical rotary joint communication apparatus for communicating between a rotor and a stator. Optical sources and detectors are arranged on both the rotor and the stator to provide bi-directional communication. As the rotor rotates, downlink detectors on the rotor sequentially communicate via line-of-sight optical channels with corresponding downlink receivers on the stator. Each downlink receiver is provided a curved mirror reflecting the downlink beam onto the downlink receiver when the rotation angle of the rotor is within a corresponding angle interval. When the rotation angle moves past the angle interval, the downlink beams transition to another mirror and another downlink receiver. The downlink beams are directed predominantly tangential to the rotor circumference.
    Type: Grant
    Filed: June 24, 2015
    Date of Patent: June 18, 2019
    Assignee: Toshiba Medical Systems Corporation
    Inventors: Marek Dudek, Ognian Ivanov
  • Patent number: 10320481
    Abstract: Described herein are ground based subsystems, and related methods, for use in transmitting an optical feeder uplink beam to a satellite that is configured to receive the optical feeder uplink beam and in dependence thereon produce and transmit a plurality of RF service downlink beams within a specified RF frequency range to service terminals. Certain embodiments are related to a resource allocator for inclusion in a ground based subsystem, and methods for use therewith. Beneficially, the resource allocator, and methods for use therewith, eliminate any need for a satellite to perform any bandwidth allocation for the plurality of service downlink beams produced and transmitted by the satellite, thereby eliminating any need for the satellite to include an on-board channelizer. Such a recourse allocator can include a plurality of channels each of which can include an encoder and modulator, a channel filter, and a frequency up-converter.
    Type: Grant
    Filed: June 26, 2017
    Date of Patent: June 11, 2019
    Assignee: Space Systems/Loral, LLC
    Inventors: Leah Wang, Vijaya Gallagher, Ghislain Turgeon