Patents Examined by Dmitry Yemelyanov
  • Patent number: 10714472
    Abstract: Semiconductor devices may include a substrate, gate electrodes on the substrate, and source/drain regions at both sides of each of the gate electrodes. Each of the gate electrodes may include a gate insulating pattern on the substrate, a lower work-function electrode pattern that is on the gate insulating pattern and has a recessed upper surface, and an upper work-function electrode pattern that conformally extends on the recessed upper surface of the lower work function electrode pattern. Topmost surfaces of the lower work-function electrode patterns may be disposed at an equal level, and the upper work-function electrode patterns may have different thicknesses from each other.
    Type: Grant
    Filed: August 14, 2017
    Date of Patent: July 14, 2020
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Kee Sang Kwon, Boun Yoon, Sangjine Park, Myunggeun Song, Ki-Hyung Ko, Jiwon Yun
  • Patent number: 10490681
    Abstract: A semiconductor device includes a pillar-shaped semiconductor layer formed on a planar semiconductor layer, a first insulator surrounding the pillar-shaped semiconductor layer, a first gate surrounding the first insulator and made of a metal having a first work function, a second gate surrounding the first insulator and made of a metal having a second work function different from the first work function, a third gate surrounding the first insulator and made of a metal having the first work function, a first metal layer surrounding the first insulator and having a third work function, and a second metal layer surrounding the first insulator and having the third work function. The first gate, the second gate, and the third gate are electrically connected together.
    Type: Grant
    Filed: October 25, 2017
    Date of Patent: November 26, 2019
    Assignee: UNISANTIS ELECTRONICS SINGAPORE PTE. LTD.
    Inventors: Fujio Masuoka, Hiroki Nakamura
  • Patent number: 10461053
    Abstract: To provide a technique capable of reducing the chip size of a semiconductor chip and particularly, a technique capable of reducing the chip size of a semiconductor chip in the form of a rectangle that constitutes an LCD driver by devising a layout arrangement in a short-side direction. In a semiconductor chip that constitutes an LCD driver, input protection circuits are arranged in a lower layer of part of a plurality of input bump electrodes and on the other hand, in a lower layer of the other part of the input bump electrodes, the input protection circuits are not arranged but SRAMs (internal circuits) are arranged.
    Type: Grant
    Filed: September 21, 2018
    Date of Patent: October 29, 2019
    Assignee: Renesas Electronics Corporation
    Inventors: Shinya Suzuki, Kiichi Makuta
  • Patent number: 9786778
    Abstract: A semiconductor device including a first electrode, a second electrode, and a silicon carbide layer of which at least a portion is provided between the first electrode and the second electrode, the silicon carbide layer including an n-type first silicon carbide region, a plurality of p-type second silicon carbide regions, and a plurality of n-type third silicon carbide regions. The semiconductor device further includes a plurality of first conductive layers each of which is in contact with the n-type first silicon carbide region, a number n, n being 2, 3, 4 or 5, of first gate electrodes that are provided between two adjacent first conductive layers of the plurality of first conductive layers, and extend in the first direction, and a plurality of first gate insulating layers each of which is provided between one of the n first gate electrodes and the n-type first silicon carbide region.
    Type: Grant
    Filed: August 29, 2016
    Date of Patent: October 10, 2017
    Assignee: KABUSHIKI KAISHA TOSHIBA
    Inventor: Kohei Morizuka
  • Patent number: 9202911
    Abstract: One illustrative device includes a source region and a drain region formed in a substrate, wherein the source/drain regions are doped with a first type of dopant material, a gate structure positioned above the substrate that is laterally positioned between the source region and the drain region and a drain-side well region positioned in the substrate under a portion, but not all, of the entire lateral width of the drain region, wherein the drain-side well region is also doped with the first type of dopant material. The device also includes a source-side well region positioned in the substrate under an entire width of the source region and under a portion, but not all, of the drain region and a part of the extension portion of the drain region is positioned under a portion of the gate structure.
    Type: Grant
    Filed: June 7, 2013
    Date of Patent: December 1, 2015
    Assignee: GLOBALFOUNDRIES Inc.
    Inventors: Jerome Ciavatti, Yanxiang Liu
  • Patent number: 9105493
    Abstract: A layout pattern of a high voltage metal-oxide-semiconductor transistor device includes a first doped region having a first conductivity type, a second doped region having the first conductivity type, and an non-continuous doped region formed in between the first doped region and the second doped region. The non-continuous doped region further includes a plurality of third doped regions, a plurality of gaps, and a plurality of fourth doped regions. The gaps and the third doped regions s are alternately arranged, and the fourth doped regions are formed in the gaps. The third doped regions include a second conductivity type complementary to the first conductivity type, and the fourth doped regions include the first conductivity type.
    Type: Grant
    Filed: May 21, 2012
    Date of Patent: August 11, 2015
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Ming-Tsung Lee, Cheng-Hua Yang, Wen-Fang Lee, Chih-Chung Wang, Te-Yuan Wu
  • Patent number: 8981472
    Abstract: A high-voltage MOS transistor has a semiconductor substrate formed with a first well of a first conductivity type in which a drain region and a drift region are formed and a second well of a second, opposite conductivity type in which a source region and a channel region are formed, a gate electrode extends over the substrate from the second well to the first well via a gate insulation film, wherein there is formed a buried insulation film in the drift region underneath the gate insulation film at a drain edge of the gate electrode, there being formed an offset region in the semiconductor substrate between the channel region and the buried insulation film, wherein the resistance of the offset region is reduced in a surface part thereof by being introduced with an impurity element of the first conductivity type with a concentration exceeding the first well.
    Type: Grant
    Filed: November 10, 2011
    Date of Patent: March 17, 2015
    Assignee: Fujitsu Semiconductor Limited
    Inventors: Takae Sukegawa, Youichi Momiyama
  • Patent number: 8754469
    Abstract: An integrated circuit includes an extended drain MOS transistor with parallel alternating active gap drift regions and field gap drift regions. The extended drain MOS transistor includes a gate having field plates over the field gap drift regions. The extended drain MOS transistor may be formed in a symmetric nested configuration. A process for forming an integrated circuit containing an extended drain MOS transistor provides parallel alternating active gap drift regions and field gap drift regions with a gate having field plates over the field gap drift regions.
    Type: Grant
    Filed: October 25, 2011
    Date of Patent: June 17, 2014
    Assignee: Texas Instruments Incorporated
    Inventors: Sameer P. Pendharkar, John Lin