Patents Examined by Dominic E Hawkins
  • Patent number: 11913992
    Abstract: A machine tool includes a first motor that receives load fluctuation when the workpiece is processed and a second motor that operates to change the plural kinds of tools. An information processing device takes out the current of the first motor measured by the first current sensor for each signal that occurs at the changing operation of the plural kinds of tools and is measured by the second current sensor, and relatively compares a non-negative function value that has a current value at each taken-out segment as a parameter for each number of times of processing on the workpiece, thereby detecting a tool abnormality for each kind of the tool.
    Type: Grant
    Filed: November 9, 2021
    Date of Patent: February 27, 2024
    Assignee: MAZIN Inc.
    Inventors: Takanori Kadoya, Yusuke Uchiyama
  • Patent number: 11912331
    Abstract: A capacitance sensor (1) is provided with two electrode layers (10, 11) and an insulating layer (12) disposed between the electrode layers (10, 11). At least one of the two electrode layers (10, 11) is constituted by a reticulated soft electrode (50) that is formed from a conductive polymer and has a reticulated shape. The conductive polymer comprises a polymer and a conductive material dispersed in the polymer and has an elastic modulus of 1000 MPa or less. This method for manufacturing the capacitance sensor (1) in which the two electrode layers (10, 11) are constituted by the reticulated soft electrode (50) comprises: an electrode manufacturing step in which the reticulated soft electrode (50) is manufactured; and a laminating step in which the reticulated soft electrode (50) is laminated onto the front and back surfaces of the insulating layer (12).
    Type: Grant
    Filed: March 5, 2021
    Date of Patent: February 27, 2024
    Assignee: Sumitomo Riko Company Limited
    Inventors: Masayoshi Nakano, Tsubasa Shinozuka, Hiroaki Ito, Shigeaki Takamatsu
  • Patent number: 11913783
    Abstract: An improved geometry sensor for an inline inspection tool used for determining defects in a pipe or other conduit. The sensor having an arm pivotally mounted to a base on a body of an inline inspection tool and a spring biasing the arm away from the body of the inline inspection tool. A magnet mounted to the arm, the magnet having a magnetic field. A Hall effect sensor fixed relative to the body of the of the inline inspection. The outer end of the arm moves along an interior surface of a conduit as the tool passes through a pipe with the arm and magnet pivoting relative to the body and the Hall effect sensor detecting movement and deflection of the arm by measuring changes in the magnetic field.
    Type: Grant
    Filed: September 29, 2021
    Date of Patent: February 27, 2024
    Assignee: Cypress In-Line Inspection, LLC
    Inventors: Blake Kay Burton, Arthur K. Fox
  • Patent number: 11898932
    Abstract: A device for diagnosing a fault in a bearing of a motor is provided. If the device operates in a fault diagnosis mode, a current signal acquisition unit acquires a real-time current signal of the motor, a residual signal acquisition unit extracts harmonic signals from the real-time current signal of the motor acquired by the current signal acquisition unit and remove a fundamental signal and a harmonic signal from the real-time current signal of the motor to acquire a residual signal, a fault feature extraction unit analyzes the residual signal in both time domain and frequency domain to extract a fault feature index of the bearing, and a fault diagnosis model unit performs, by using a bearing fault diagnosis model obtained through training, pattern recognition on the fault feature index to diagnose a fault state of the bearing.
    Type: Grant
    Filed: September 3, 2019
    Date of Patent: February 13, 2024
    Assignee: ZHUZHOU CRRC TIMES ELECTRIC CO., LTD.
    Inventors: Wenlong Zhu, Yong Liu, Jisheng Dai, Zongshuai Li, Jiawei Yang, Ping Jiang, Yanhao Zhan, Zhongjing Zhang, Hailong Xu
  • Patent number: 11892475
    Abstract: Current sensor comprising: one pair, of identical electrical coils with superparamagnetic cores and surrounded by a common shielding braid; a direct current excitation means configured to make a direct current flow in at least one of the coils of the pair of coils and a means of adjusting an intensity of the direct current; a first alternating current excitation means configured to make an alternating current flow at a first frequency in the coils of the pair that the direct current flows through; a second alternating current excitation means configured to make an alternating current flow at a second frequency greater than the first frequency in the two coils of the pair of coils; a means of measuring an electromotive force of the Noel Effect® type at the terminals of the two coils of the pair.
    Type: Grant
    Filed: December 7, 2021
    Date of Patent: February 6, 2024
    Assignee: SAFRAN ELECTRICAL & POWER
    Inventor: Lionel Cima
  • Patent number: 11892476
    Abstract: Current sensor packages are described including a leadframe configured to carry a current to be sensed and a current sensor that is electrically isolated from the leadframe. The current sensor is disposed adjacent to a first portion of the leadframe that includes a plurality of notches. An encapsulating material is configured to encapsulate the current sensor and at least a part of the first portion of the leadframe that is adjacent to the current sensor and includes the plurality of notches. The current sensor includes a substrate, a first magnetic field sensing element that is formed on the substrate, and a second magnetic field sensing element that is formed on the substrate. The first magnetic field sensing element and the second magnetic field sensing element are disposed on opposite sides of a central axis of the first portion of the leadframe.
    Type: Grant
    Filed: February 15, 2022
    Date of Patent: February 6, 2024
    Assignee: Allegro MicroSystems, LLC
    Inventors: Simon E. Rock, Thomas Kerdraon, Yannick Vuillermet, Loïc André Messier, Andreas P. Friedrich
  • Patent number: 11892478
    Abstract: A magnetic sensor device includes a first detection circuit that generates a first detection signal, a coil through which a feedback current is passed to generate a cancellation magnetic field, a second detection circuit that generates a second detection signal having a correspondence with a value of the feedback current, and a control circuit that controls the feedback current. In a closed-loop operation, the control circuit controls the feedback current so that the first detection signal has a constant value. In an open-loop operation, the control circuit maintains the feedback current at a constant value.
    Type: Grant
    Filed: February 17, 2023
    Date of Patent: February 6, 2024
    Assignee: TDK CORPORATION
    Inventors: Yuta Saito, Hiraku Hirabayashi
  • Patent number: 11885835
    Abstract: A magnetic field detection apparatus includes a magnetoresistive effect element and a coil. The coil includes first and second tier parts opposed to each other in a first axis direction, with the magnetoresistive dal element interposed therebetween. The coil is configured to be supplied with a current and thereby configured to generate an induction magnetic field to be applied to the magnetoresistive effect element in a second axis direction. The first tier part includes first conductors extending in a third axis direction, arranged in the second axis direction and coupled in parallel to each other. The second tier part includes a second conductor or second conductors extending in the third axis direction, the second conductors being arranged in the second axis direction and coupled in parallel to each other. The first conductor each have a width smaller than a width of the second conductor or each of the second conductors.
    Type: Grant
    Filed: July 18, 2022
    Date of Patent: January 30, 2024
    Assignee: TDK CORPORATION
    Inventors: Takafumi Kobayashi, Norikazu Ota, Kenzo Makino
  • Patent number: 11879948
    Abstract: In electrical fault detection device that is mounted on a vehicle and includes: energy storage unit to be mounted in a state of being insulated from a chassis ground of the vehicle; first switch inserted into positive wire; and second switch inserted into negative wire, in order to suppress a total cost by not using an expensive component while securing detection accuracy, electrical fault detection device further includes coupling capacitor, AC output unit, first voltage measurement unit, first determination unit, voltage dividing circuit, second voltage measurement unit, and second determination unit. Voltage dividing circuit is connected between positive wire between first switch and one end of load and negative wire between second switch and the other end of load.
    Type: Grant
    Filed: December 9, 2019
    Date of Patent: January 23, 2024
    Assignee: SANYO Electric Co., Ltd.
    Inventors: Masato Nakayama, Tomonori Kunimitsu, Taisuke Hamada, Yasuharu Tanaka
  • Patent number: 11879910
    Abstract: An integrated circuit device testing system includes a socket configured to receive an integrated circuit device, wherein the socket comprises at least one conductive trace made of a material with a resistivity that is a function of temperature, and wherein the socket is configured such that, when the integrated circuit device is located in the socket, the at least one conductive trace extends along a surface of the integrated circuit device. The integrated circuit device testing system further includes a controller or active circuit configured to determine a temperature at the surface of the integrated circuit device based on a measured resistance of the at least one conductive trace.
    Type: Grant
    Filed: September 17, 2020
    Date of Patent: January 23, 2024
    Assignee: DELTA DESIGN, INC.
    Inventor: Jerry Ihor Tustaniwskyj
  • Patent number: 11874341
    Abstract: A method for monitoring an online state of a bonding wire of an Insulated Gate Bipolar Translator (IGBT) module comprises the following steps: Step 1, constructing a full bridge inverter circuit and an online measuring circuit and connecting two input ends of the online measuring circuit to a collecting electrode and an emitting electrode of an IGBT power module of the full bridge inverter circuit to realize a connection of the full bridge inverter circuit and the online measuring circuit; Step 2, establishing a three-dimensional data model of a healthy IGBT; Step 3, establishing a three-dimensional data model of the IGBT with a broken bonding wire; Step 4, optimizing a least squares support vector machine by adopting a genetic algorithm; and Step 5, estimating states of the three-dimensional data models obtained in the Step 2 and the Step 3 by utilizing the optimized least squares support vector machine.
    Type: Grant
    Filed: July 29, 2019
    Date of Patent: January 16, 2024
    Assignee: HEFEI UNIVERSITY OF TECHNOLOGY
    Inventors: Yigang He, Kaiwei Li, Liulu He, Zhigang Li
  • Patent number: 11867643
    Abstract: The present invention relates to a planar-type plasma diagnosis apparatus comprising: a transmission antenna for applying a frequency-variable microwave to plasma; a reception antenna for receiving the microwave from the plasma; and a body part encompassing the transmission antenna and the reception antenna so that same are insulated from each other, wherein the upper surface of the transmission antenna for applying the microwave and the upper surface of the reception antenna for receiving the microwave are planar, and side surfaces of the upper surfaces of the transmission antenna and the reception antenna face each other.
    Type: Grant
    Filed: April 15, 2019
    Date of Patent: January 9, 2024
    Assignee: KOREA RESEARCH INSTITUTE OF STANDARDS AND SCIENCE
    Inventors: Hyo Chang Lee, Jung Hyung Kim, Dae Jin Seong, Hee Jung Yeom
  • Patent number: 11867730
    Abstract: A sensor device coupled to a communication interface bus, the sensor device includes: a current source having a first terminal operable to receive a supply current, a second terminal operable to provide a supply current, and a control terminal, wherein an operating voltage is supplied by a current through the current source; a voltage clamp having a first terminal coupled to the second terminal of the current source, a second terminal coupled to a power supply terminal, and an output terminal operable to provide a current sense signal; and a control circuit having an input terminal coupled to the output terminal of the voltage clamp and an output terminal coupled to the control terminal of the current source operable to provide an adjustment signal responsive to the current sense signal, wherein the current source is configured to adjust the current through the current source responsive to the adjustment signal.
    Type: Grant
    Filed: February 16, 2021
    Date of Patent: January 9, 2024
    Assignee: SEMICONDUCTOR COMPONENTS INDUSTRIES, LLC
    Inventors: Tomas Suchy, Miroslav Stepan, Pavel Hartl, Marek Hustava, Petr Kamenicky
  • Patent number: 11864471
    Abstract: A described example includes: a semiconductor die including a Hall sensor arranged in a first plane that is parallel to a device side surface of the semiconductor die; a passivated magnetic concentrator including a magnetic alloy layer formed over the device side surface of the semiconductor die, the upper surface of the magnetic alloy layer covered by a layer of polymer material; a backside surface of the semiconductor die opposite the device side surface mounted to a die side surface of a die pad on a package substrate, the semiconductor die having bond pads on the device side surface spaced from the magnetic concentrator; electrical connections coupling the bond pads of the semiconductor die to leads of the package substrate; and mold compound covering the magnetic concentrator, the semiconductor die, the electrical connections, a portion of the leads, and the die side surface of the die pad.
    Type: Grant
    Filed: October 29, 2021
    Date of Patent: January 2, 2024
    Assignee: Texas Instruments Incorporated
    Inventors: Rafael Jose Lizares Guevara, Dok Won Lee, Kashyap Mohan
  • Patent number: 11860211
    Abstract: Systems and methods are described for monitoring a high voltage electrical system in a vehicle. An interface circuit is configured to provide isolation between a high voltage component of the vehicle and a control module. The interface circuit comprises a high voltage constant current source, a voltage threshold detector and an electrical isolation circuit. The high voltage constant current source is configured to receive an input at a first voltage from the high voltage component. The voltage threshold detector is configured to receive an output from the high voltage constant current source and to output a signal to indicate whether the voltage of the high voltage component is at, or below, a desired voltage.
    Type: Grant
    Filed: December 8, 2021
    Date of Patent: January 2, 2024
    Assignee: Ford Global Technologies, LLC
    Inventors: Michael Robert Garrard, Christopher Michael John West
  • Patent number: 11860025
    Abstract: A system for recognition and/or determination of the volume of bodies or substances made of dielectric and/or conductive material within an interior of a measuring cell in the form of a container, with a conductive and/or non-conductive measuring cell wall that has a surface directed into the interior, includes an ultra broadband microwave unit, and at least one ultra-broadband antenna having at least one disk-shaped carrier substrate which has a first surface facing a first side and a second surface which is opposed to the first surface and forms an outer side of the antenna, wherein the carrier substrate is arranged and intended to replace part of the surface of the measuring cell wall directed into the interior during operation, after fastening the ultra-broadband antenna to the measuring cell, or to extend in the interior at a distance in front of the measuring cell wall, wherein the ultra-broadband antenna includes emitter elements arranged on or in the carrier substrate is set up as an electrically shor
    Type: Grant
    Filed: May 10, 2021
    Date of Patent: January 2, 2024
    Assignee: RECHNER Industrie-Elektronik GmbH
    Inventors: Tim Wegner, Stefan Gebhardt, Armin Kohler, Eduard Bischler
  • Patent number: 11860241
    Abstract: A test point adaptor includes a body having a first and second end along a longitudinal axis. The second end includes an outer conductive sleeve. A cap includes a sleeve and a terminator. The body includes a first and second interface at the first and second ends, respectively. A center conductor extends though the body from the first interface toward the second interface. The second end includes a conical contact surface of the outer conductive sleeve. The cap matingly engages the second interface. The second end includes an electrically conductive contact member in electrical contact with the center conductor and a gripping arrangement electrically coupled with the electrically conductive contact member. The cap includes a conical contact surface to engage the conical contact surface of the outer conductive sleeve. A terminator is received by the gripping arrangement, which electrically couples the terminator to the center conductor.
    Type: Grant
    Filed: June 8, 2021
    Date of Patent: January 2, 2024
    Assignee: PPC BROADBAND, INC.
    Inventors: Kim Eriksen, Noah Montena
  • Patent number: 11852659
    Abstract: A current detection device of an embodiment includes a conductor, a first magnetic field detector, a second magnetic field detector, and a conductive film. The conductor includes a first region, a second region, and a third region connecting an edge of the first region and an edge of the second region. The first magnetic field detector is disposed between the first and second regions. The second magnetic field detector is disposed opposite to the first magnetic field detector with respect to the third region. The conductive film is bonded to a conductor layer including a slit having a width larger than each of widths of magneto-sensitive parts of the first and second magnetic field detectors and covers the slit, the conductor layer being provided between the conductor and each of the first and second magnetic field detectors.
    Type: Grant
    Filed: February 24, 2022
    Date of Patent: December 26, 2023
    Assignees: KABUSHIKI KAISHA TOSHIBA, TOSHIBA ELECTRONIC DEVICES & STORAGE CORPORATION
    Inventors: Jia Liu, Yasuyuki Fujiwara
  • Patent number: 11846658
    Abstract: A current sampling circuit with on-chip real-time calibration is used to detect the on-state current of a driving transistor. The current sampling circuit includes a first resistor, a second resistor, a voltage sampling circuit, a sampling voltage operational circuit and an on-state resistance calibration circuit. The voltage sampling circuit is used to obtain on-state voltage drop value of the driving transistor Vds. The on-state resistance calibration circuit includes a reference current source and a calibrating transistor. On-state resistance value of the calibrating transistor is set to be K1 times of on-state resistance value of the driving transistor. The on-state voltage drop value Vds obtained by the voltage sampling circuit and the on-voltage drop value of the calibrating transistor Vrsns are input to the sampling voltage operational circuit to obtain proportional relationship K2 between the on-state voltage drop value Vds and the on-state voltage drop value Vrsns.
    Type: Grant
    Filed: July 31, 2023
    Date of Patent: December 19, 2023
    Assignee: X-SIGNAL INTEGRATED CO., LTD.
    Inventors: Wei Qi, Nailong Wang
  • Patent number: 11835552
    Abstract: A current detection device (100) includes a shunt resistor (1) connected in series to a path through which a current flows; a first circuit (2) that converts a voltage across the shunt resistor (1) into a predetermined differential voltage; a second circuit (3) to which the predetermined differential voltage is input from the first circuit (2) via a pair of wirings (55) and that amplifies the predetermined differential voltage; a constant current circuit (4) connected between the pair of wirings (55); and an arithmetic circuit (5) that operates the current flowing through the path based on the voltage amplified by the second circuit (3).
    Type: Grant
    Filed: May 28, 2020
    Date of Patent: December 5, 2023
    Assignees: NISSAN MOTOR CO., LTD., RENAULT S.A.S.
    Inventors: Naoki Takigashira, Masanori Yamashita, Kouichi Matsuda