Patents Examined by Don J Williams
  • Patent number: 10591633
    Abstract: Concepts and technologies for optical environmental filtering with intrusion protection are provided. In an embodiment, a system can include a first intrusion detection frame structure, a second intrusion detection frame structure, a controller unit, and a laser filter frame structure that is disposed between the first intrusion detection frame structure and the second intrusion detection frame structure. The laser filter frame structure can include at least one laser emitter that projects at least one laser beam that forms a laser emission plane between the first light intrusion plane and the second light intrusion plane. The controller unit can activate at least one laser emitter, and in response to detecting an object passing through the first light intrusion plane, deactivate a laser emitter to pause creation of the laser emission plane. The controller can reactivate a laser emitter before the object passes through the second light intrusion plane.
    Type: Grant
    Filed: December 22, 2017
    Date of Patent: March 17, 2020
    Assignee: AT&T Intellectual Property I, L.P.
    Inventors: Barrett Kreiner, Jonathan Reeves, Ryan Schaub
  • Patent number: 10591384
    Abstract: The present invention relates to a support structure for an optical time domain reflectometer and an optical time domain reflectometer containing such structure comprises a rear housing and a support portion, among which, the support portion comprises a cover support plate and an inner support plate; the cover support plate is connected to the rear housing through a cover rotating shaft portion, and the inner support plate is connected to the cover support plate through an inner plate rotating shaft portion; the surface area of the inner support plate is smaller than that of the cover support plate. The invention can solve the shortcoming of the instability of the support of existing optical time domain reflectometers, and provide a support structure for an optical time domain reflectometer having low cost, stable structure, and that can automatically open the support, as well as an optical time domain reflectometer used with this support structure.
    Type: Grant
    Filed: December 28, 2017
    Date of Patent: March 17, 2020
    Assignee: INNO INSTRUMENT (CHINA) .INC
    Inventor: Yangri Zhao
  • Patent number: 10591356
    Abstract: The invention relates to a beam combiner for a microscope, in particular a scanning microscope, which receives at least a first illuminating light bundle and a second illuminating light bundle and combines them into a collinear output light bundle, the first illuminating light bundle and the second illuminating light bundle having the same illuminating light wavelength but a different polarization, in particular linear polarization. The beam combiner is embodied as an acousto-optic beam combiner and is constructed and operated in such a way that by interaction with at least one mechanical wave, both the first illuminating light bundle and the second illuminating light bundle are diffracted and are thereby directed into a common optical axis.
    Type: Grant
    Filed: September 3, 2014
    Date of Patent: March 17, 2020
    Assignee: Leica Microsystems CMS GmbH
    Inventors: Volker Seyfried, Vishnu Vardhan Krishnamachari
  • Patent number: 10571309
    Abstract: Various embodiments relate to devices for measuring the state of devices and multi-stage rotary encoders as well as to associated sensors. In order to simplify the design of devices which can be read out electronically and multi-turn rotary encoders, according to some embodiments a device having at least one rotatable wheel, at least one light source and at least one polarization sensor is proposed, the wheel being at least partially transparent and polarization-maintaining, parts of the wheel being configured as pole filters, it being possible for light which exits the light source to be polarized by the pole filter and to be received by the polarization sensor.
    Type: Grant
    Filed: February 22, 2016
    Date of Patent: February 25, 2020
    Inventor: Guenter Grau
  • Patent number: 10566379
    Abstract: A CMOS imaging system with increased charge storage of pixels yet decreased physical size, kTC noise and active area. A storage node is connected to the transfer gate and provides a storage node for a pixel, allowing for kTC noise reduction prior to readout. The pixel may be operated with the shutter gate on during the integration period to increase the amount of time for charge storage by a pixel.
    Type: Grant
    Filed: July 11, 2018
    Date of Patent: February 18, 2020
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Peter P. Altice, Jr., Jeffery A. McKee
  • Patent number: 10563852
    Abstract: A photocell cover, including a jacket that defines a jacket cavity and a jacket opening, that is operable to be used by the user at any time of day and in any level of ambient light. The invention achieves this object by providing a photocell cover to cover a photocell and its housing, blocking any ambient light from reaching the photocell, in order to provide an environment in which the photocell can be tested. The jacket cavity and jacket opening receive a housing of a photocell and simulate a low level of ambient light in the area surrounding the photocell in order to test the functionality of the photocell. The method of using the photocell cover allows the user to test the photocell during any time of day or night, including from a ground level position.
    Type: Grant
    Filed: December 23, 2016
    Date of Patent: February 18, 2020
    Inventor: Ricardo Ordonez
  • Patent number: 10557646
    Abstract: A solar tracker system comprising a plurality of on sun trackers and a plurality of off sun tracker. Each tracker is selectively adjusted to achieve a desired power output of the solar power plant system in an example.
    Type: Grant
    Filed: July 10, 2017
    Date of Patent: February 11, 2020
    Assignee: NEXTracker Inc.
    Inventors: Yu Dong Ma, Yang Liu, Francesco Borrelli, Allan Daly, Ricardo Delgado-Nanez, Alexander W. Au
  • Patent number: 10546963
    Abstract: Methods and systems for germanium-on-silicon photodetectors without germanium layer contacts are disclosed and may include, in a semiconductor die having a photodetector, where the photodetector includes an n-type silicon layer, a germanium layer, a p-type silicon layer, and a metal contact on each of the n-type silicon layer and the p-type silicon layer: receiving an optical signal, absorbing the optical signal in the germanium layer, generating an electrical signal from the absorbed optical signal, and communicating the electrical signal out of the photodetector via the n-type silicon layer and the p-type silicon layer. The photodetector may include a horizontal or vertical junction double heterostructure where the germanium layer is above the n-type and p-type silicon layers. An intrinsically-doped silicon layer may be below the germanium layer between the n-type silicon layer and the p-type silicon layer. A top portion of the germanium layer may be p-doped.
    Type: Grant
    Filed: October 29, 2015
    Date of Patent: January 28, 2020
    Assignee: Luxtera, Inc.
    Inventors: Kam-Yan Hon, Gianlorenzo Masini, Subal Sahni
  • Patent number: 10539395
    Abstract: A system and method for improved detection of lasers for use in laser guidance systems. By providing background illumination via one or more radiation sources the accuracy of the laser detection system can be improved. A closed loop system detects the background current on the detector and provides additional illumination when the back ground level is below a threshold current value thus providing for a faster detector response.
    Type: Grant
    Filed: March 5, 2018
    Date of Patent: January 21, 2020
    Assignee: BAE Systems Information and Electronic Systems Integration Inc.
    Inventors: Dimitre P. Dimitrov, Michael J. Choiniere, Jason T. Whitwam
  • Patent number: 10538288
    Abstract: A rotation calculating device comprising: a first rotating device; a first target device; an first optical characteristic acquiring device, configured to acquire optical characteristics for at least one feature of the first target device; and a calculating unit, configured to calculate rotation for the first rotating device based on the optical characteristics of the feature.
    Type: Grant
    Filed: July 11, 2017
    Date of Patent: January 21, 2020
    Assignee: PixArt Imaging Inc.
    Inventors: Chung-Ting Yang, Yen-Min Chang, Ching-Lin Chung
  • Patent number: 10535689
    Abstract: A semiconductor device including photosensor capable of imaging with high resolution is disclosed. The semiconductor device includes the photosensor having a photodiode, a first transistor, and a second transistor. The photodiode generates an electric signal in accordance with the intensity of light. The first transistor stores charge in a gate thereof and converts the stored charge into an output signal. The second transistor transfers the electric signal generated by the photodiode to the gate of the first transistor and holds the charge stored in the gate of the first transistor. The first transistor has a back gate and the threshold voltage thereof is changed by changing the potential of the back gate.
    Type: Grant
    Filed: April 28, 2015
    Date of Patent: January 14, 2020
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventor: Yoshiyuki Kurokawa
  • Patent number: 10521017
    Abstract: A gesture sensing device includes a multiple segmented photo sensor and a control circuit for processing sensed voltages output from the sensor. The control circuit processes the sensed voltage signals to determine target motion relative to the segmented photo sensor. The control circuit includes an algorithm configured to calculate one of more differential analog signals using the sensed voltage signals output from the segmented photo sensors. A vector is determined according to the calculated differential analog signals, the vector is used to determine a direction and/or velocity of the target motion.
    Type: Grant
    Filed: January 4, 2016
    Date of Patent: December 31, 2019
    Assignee: Maxim Integrated Products, Inc.
    Inventors: David Skurnik, Nevzat A. Kestelli, Ilya K. Veygman, Anand Chamakura, Christopher F. Edwards, Nicole D. Kerness, Pirooz Parvarandeh, Sunny K. Hsu
  • Patent number: 10514293
    Abstract: An apparatus adapted for confocal imaging of a non-flat specimen comprising a coherent light source for producing a light beam, imaging optics adapted to focus the light beam into at least one spot on a surface of a specimen, and a detector adapted to receive and detect light reflected from the specimen surface. The imaging optics comprise at least one optical component located so that the light reflected from the specimen surface passes therethrough on its way to the detector. The optical component is movable so as to move the at least one spot, within a range of movement, to a number of distinct locations in a plane perpendicular to the apparatus' optical axis, within the detector's integration time.
    Type: Grant
    Filed: April 10, 2017
    Date of Patent: December 24, 2019
    Assignee: ALIGN TECHNOLOGY, INC.
    Inventors: Noam Babayoff, Yossef Atiya, Tzvi Philipp
  • Patent number: 10505094
    Abstract: Superconducting nanowire avalanche photodetectors (SNAPs) have using meandering nanowires to detect incident photons. When a superconducting nanowire absorbs a photon, it switches from a superconducting state to a resistive state, producing a change in voltage that can be measured across the nanowire. A SNAP may include multiple nanowires in order to increase the fill factor of the SNAP's active area and the SNAP's detection efficiency. But using multiple meandering nanowires to achieve high fill-factor in SNAPs can lead to current crowding at bends in the nanowires. This current crowding degrades SNAP performance by decreasing the switching current, which the current at which the nanowire transitions from a superconducting state to a resistive state. Fortunately, staggering the bends in the nanowires reduces current crowding, increasing the nanowire switching current, which in turn increases the SNAP dynamic range.
    Type: Grant
    Filed: December 29, 2015
    Date of Patent: December 10, 2019
    Assignee: Massachusetts Institute of Technology
    Inventors: Kristen Ann Sunter, Faraz Najafi, Adam Nykoruk McCaughan, Karl Kimon Berggren
  • Patent number: 10497737
    Abstract: A pixel element for an imaging sensor comprises a semiconductor substrate, a radiation-sensitive element configured to generate electric charges in response to incident radiation, a charge accumulation region provided in the semiconductor substrate configured to accumulate at least a portion of the electric charges, and an electrode arranged on the semiconductor substrate adjacent to the charge accumulation region. The electrode is electrically insulated from the semiconductor substrate such as to form an inversion region in the semiconductor substrate that connects to the charge accumulation region when a voltage is applied to said electrode.
    Type: Grant
    Filed: May 30, 2013
    Date of Patent: December 3, 2019
    Assignee: Caeleste CVBA
    Inventor: Bart Dierickx
  • Patent number: 10483413
    Abstract: A photoelectric module of the present disclosure includes an optical device including an optical function element array made of a first base material, and a plurality of light emitting/receiving elements made of a second base material, wherein the optical function element array includes an optical substrate and a plurality of optical function elements, the optical substrate having a first surface and a second surface, and the optical function elements being integrated with the optical substrate and being arranged one-dimensionally or two-dimensionally, and the light emitting/receiving elements and their respective optical function elements face each other with the optical substrate in between to be located on a same axis in a direction perpendicular to the optical substrate, and the light emitting/receiving elements are disposed on the second surface with a space in between while being separated in units of a smaller number than array number in the optical function element array.
    Type: Grant
    Filed: April 23, 2015
    Date of Patent: November 19, 2019
    Assignee: Sony Corporation
    Inventors: Hiizu Ootorii, Kazunao Oniki, Koki Uchino, Hideyuki Suzuki, Hiroshi Ozaki, Kazuki Sano, Eiji Otani, Shinji Rokuhara, Kiwamu Adachi, Shuichi Oka, Shusaku Yanagawa, Hiroshi Morita, Takeshi Ogura
  • Patent number: 10440244
    Abstract: Imaging apparatus (26) includes an image sensor (30), configured to capture an image of radiation at a target wavelength that is incident on a front surface of the image sensor. A metasurface (28) having a negative permittivity and a negative permeability at the target wavelength is fixed to the front surface of the image sensor.
    Type: Grant
    Filed: May 26, 2015
    Date of Patent: October 8, 2019
    Assignee: TECHNION RESEARCH & DEVELOPMENT FOUNDATION LIMITED
    Inventors: Gilad Rosenblatt, Meir Orenstein
  • Patent number: 10429591
    Abstract: Integrated optical component combine the functions of a Variable Optical Attenuator (VOA), a tap coupler, and a photo-detector, reducing the size, cost, and complexity of these functions. In other embodiments, the integrated optical component combines the functions of an optical switch, a tap coupler, and a photo-detector. A rotatable mirror is used to adjust the coupling of light from an input port or ports to one or more output ports. A pin hole with a surrounding reflective surface is used at the core end face of one or more output fibers, such that a portion of the output optical signal is reflected to a photodiode chip. The photo-detector provides an indication of the optical power that is being coupled to the output fiber. With appropriate electronic control circuitry, the integrated optical component can be used to set the output optical power at a desired or required level.
    Type: Grant
    Filed: June 16, 2016
    Date of Patent: October 1, 2019
    Assignee: DICON FIBEROPTICS, INC.
    Inventors: Ho-Shang Lee, Brian Chiang
  • Patent number: 10426889
    Abstract: An optical sensor for a delivery device having a piston that displaces a substance, such as a fluid, from a reservoir. The optical sensor has a light source and a detector array for imaging encoding features disposed along a plunger rod coupled to the piston. By virtue of the pattern of encoding features, an absolute position of the plunger rod relative to a fiducial position may be determined uniquely. Thus, the volume of fluid remaining in the reservoir, the rate of fluid delivery, and proper loading of the reservoir may be accurately ascertained. Additionally, the encoding may serve to uniquely identify a version of the reservoir which may be supplied in various versions corresponding, for example, to differing concentrations of a therapeutic agent to be dispensed.
    Type: Grant
    Filed: April 23, 2018
    Date of Patent: October 1, 2019
    Assignee: DEKA PRODUCTS LIMITED PARTNERSHIP
    Inventors: Marc A. Mandro, Larry B. Gray
  • Patent number: 10416358
    Abstract: Embodiments of the present invention include a device for removing energy from a beam of electromagnetic radiation. Typically, the device can be operatively coupled to a turbidity measuring device to remove energy generated by the turbidity measuring device. The device can include a block of material having one of a plurality of different shapes coated in an energy absorbing material. Generally, the device can include an angled or rounded energy absorbing surface where the beam of electromagnetic radiation can be directed. The angled or rounded energy absorbing surface can configured to deflect a portion of the beam of electromagnetic radiation to a second energy absorbing surface.
    Type: Grant
    Filed: October 20, 2016
    Date of Patent: September 17, 2019
    Inventor: Perry Palumbo