Patents Examined by Douglas J. Theisen
  • Patent number: 7682421
    Abstract: A liquid is degassed with an apparatus including a membrane contactor, where the liquid is drawn through the apparatus by gravity.
    Type: Grant
    Filed: October 12, 2006
    Date of Patent: March 23, 2010
    Assignee: Celgard LLC
    Inventors: Gareth P. Taylor, Jorge Munoz
  • Patent number: 7655079
    Abstract: A gas-liquid separation apparatus includes an inlet pipe for transferring liquid with gas dissolved therein and a separating pipe for separating the gas from the liquid. The separating pipe has a spiral-shaped guiding member therein. The separating pipe extends from the inlet pipe and is in alignment and communicating with the inlet pipe. An outlet pipe extends from a joint of the inlet pipe and the separating pipe and communicates with the separating pipe, for transferring therein the liquid after the liquid has been degassed by the spiral-shaped guiding member in the separating pipe. A gas storage device communicates with the separating pipe and outside for collecting the gas from the separating pipe and discharging the gas to the outside.
    Type: Grant
    Filed: October 26, 2006
    Date of Patent: February 2, 2010
    Assignees: Fu Zhun Precision Industry (Shen Zhen) Co., Ltd., Foxconn Technology Co., Ltd.
    Inventors: Cheng-Tien Lai, Zhi-Yong Zhou, Qiao-Li Ding
  • Patent number: 7655078
    Abstract: A bubble separator includes a body with a generally cylindrical shape, an oil induction portion, a gas discharge portion with a generally cylindrical shape, an oil discharge portion, and an upper partition. The oil induction portion is provided on the body, and introduces bubble-containing oil to inside the body. The gas discharge portion is provided extending from a ceiling portion of the body, and discharges separated bubbles to outside the body. The oil discharge portion is provided on the body, and discharges separated oil to outside the body. The upper partition is provided extending from the ceiling portion, and is formed on a periphery of the gas discharge portion. According to the bubble separator of the present invention, the upper partition can prevent bubble-containing oil from directly blowing into the discharge hole of the gas discharge portion and discharging to outside the body together with separated gas.
    Type: Grant
    Filed: October 20, 2006
    Date of Patent: February 2, 2010
    Assignee: Toyota Boshoku Kabushiki Kaisha
    Inventors: Yasuhiro Saito, Toshihiro Takahara
  • Patent number: 7645330
    Abstract: A gas-liquid separation apparatus includes a container and a separating pipe located in the container. The container includes an annular wall and two lids covering two ends of the wall. The container has a cavity surrounded by the wall and the two lids. An inlet extends through one lid and an outlet extends through the other lid. The separating pipe is disposed in the cavity of the container and in communication with the inlet and the outlet of the container. A plurality of apertures is defined in a body of the separating pipe and in communication with a space inside the separating pipe and the cavity of the container. The liquid with gas dissolved therein enters into the separating pipe via the inlet of the container. The liquid is degassed by the separating pipe. The de-gassed liquid exits the separating pipe via the outlet of the container.
    Type: Grant
    Filed: October 27, 2006
    Date of Patent: January 12, 2010
    Assignees: Fu Zhun Precision Industry (Shen Zhen) Co., Ltd., Foxconn Technology Co., Ltd.
    Inventors: Cheng-Tien Lai, Zhi-Yong Zhou, Qiao-Li Ding
  • Patent number: 7637990
    Abstract: An air vent apparatus for a water tube, comprising: an air separator pipe installed to have an axial direction along a vertical direction, and connected to a portion, where an air reservoir tends to occur, of the water tube for passage of water; and air vent means for venting air accumulating in the air separator pipe.
    Type: Grant
    Filed: January 30, 2006
    Date of Patent: December 29, 2009
    Assignee: Mitsubishi Heavy Industries
    Inventors: Hiroshi Tanabe, Yasuhiro Hashimoto
  • Patent number: 7635410
    Abstract: A photo-resist dispensing apparatus is disclosed and comprises; a tank adapted to hold a photo-resist solution, a pump unit adapted to pump the photo-resist solution from the tank, a filter unit adapted to receive the photo-resist solution from the pump unit, and at least one of a first gas discharge unit connected to the tank and adapted to remove gas bubbles from the photo-resist solution held in the tank, and a second gas discharge unit connected to the filter unit and adapted to remove gas bubbles from the photo-resist solution in the filter.
    Type: Grant
    Filed: June 14, 2006
    Date of Patent: December 22, 2009
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jin-Jun Park, Suk-Fill Yun
  • Patent number: 7632336
    Abstract: A degassing and water removal apparatus is used in combination with the testing or replacement of dielectric oil in an RF transmitter. The apparatus comprises at least one ultrasound transducer in vibrational communication with a bulk oil sample held in a tank having a reduced internal air pressure. The tank has fluid connections to the RF transmitter through which oil from the transmitter is drained to the tank and through which the ambient air pressure in the transmitter is reduced. A fluid pump is used to pump the oil from the tank back to the RF transmitter. In a method of using such an apparatus, the RF transmitter is held at reduced internal pressure during the return of oil thereto, so that the oil does not dissolve gases in the atmosphere internal to the RF transmitter.
    Type: Grant
    Filed: January 4, 2007
    Date of Patent: December 15, 2009
    Assignee: DRS Sustainment Systems, Inc.
    Inventors: Douglas Lee Williams, Jeffrey Stephen Malkmus, Gerald Scott Brown, Samuel Berliner, III
  • Patent number: 7625438
    Abstract: A method and device are provided for reducing the oxygen content of seawater, where the seawater is introduced into the upper part (14) of a downcomer (12), particularly for treatment of ballast water in a ballast tank (4) of a ship (1). A seawater intake pipe (6) runs from the outside of the ship to a ballast pump (8) that is designed to pump the water on through a pump pipe (10) and up to the upper part of the downcomer. The downcomer extends mainly vertically down to the ballast compartment of the ship, where the ballast water can be distributed between several ballast compartments by means of distribution headers and valves. One aim of the invention is to neutralize organisms in the ballast water.
    Type: Grant
    Filed: July 22, 2004
    Date of Patent: December 1, 2009
    Assignee: Knutsen OAS Shipping AS
    Inventor: Per Lothe
  • Patent number: 7615103
    Abstract: The present invention is directed to methods and apparatuses for removing bubbles from a process liquid. The process liquid can comprise a plating solution used in a plating tool. The process liquid is supplied to a tank. A plurality of streams of the process liquid are directed towards a surface of the process liquid from below. This can be done by feeding the process liquid to a flow distributor comprising a plurality of openings providing flow communication between an inner volume of the flow distributor and a main volume of the tank. Before leaving the tank through an outlet, the process liquid flows through a flow barrier.
    Type: Grant
    Filed: August 11, 2005
    Date of Patent: November 10, 2009
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Helge Hartz, Markus Nopper, Axel Preusse
  • Patent number: 7601261
    Abstract: The water to treat is received in a chamber (1) with a rapid mixer and from there it passes to a second chamber for coagulation (3) and from that to a third chamber for flocculation (4) where it is mixed with certain coagulating reagents. It then enters a separator (7) provided with some filtering membranes (5) where it is clarified. In the separator (7) there are some air nozzles (6) which sweep the surface of the said filtering membranes (5), some inlet nozzles (8) for floccules coming from the coagulation-flocculation and other air outlet nozzles (6) for distribution of said floccules underneath the membrane (5).
    Type: Grant
    Filed: January 31, 2006
    Date of Patent: October 13, 2009
    Assignee: Acciona Agua, S.A.U.
    Inventor: Enric Palacios DoƱaque
  • Patent number: 7588631
    Abstract: Vacuum deaerators and methods of using for deaeration comprise a vessel having side walls and a cover. The vacuum deaerator further comprises at least one vacuum source coupled to the vessel, and an open-ended distributor plate comprising outer edges spaced from the walls of the vessel. Additionally, the vacuum deaerator comprises a drive shaft configured to rotate the distributor plate, and at least one feed port configured to provide a liquid comprising entrained gases to a surface of the distributor plate. The distributor plate is configured to deaerate the liquid by substantially removing entrained gases from the liquid through the application of centrifugal force.
    Type: Grant
    Filed: February 15, 2006
    Date of Patent: September 15, 2009
    Assignee: The Western States Machine Company
    Inventor: Jeffrey R. Hoffmann
  • Patent number: 7578870
    Abstract: A fluid separator device allows for introducing air entrained in a liquid flow to a centrifugal pump in a manner that will not allow the pump to become gas bound. One example device designed according to this invention includes a housing having an inlet and an outlet downstream of the inlet. An air chamber is positioned on an opposite side of the inlet from the outlet. An air flow passage allows air from the air chamber to be introduced near a rotor assembly input of a centrifugal pump such that relatively small air bubbles are introduced to the liquid flow through the rotor assembly in a manner that prevents the air bubbles from recollecting into a larger bubble that would otherwise interfere with the centrifugal pump operation.
    Type: Grant
    Filed: December 17, 2004
    Date of Patent: August 25, 2009
    Assignee: Hamilton Sundstrand Corporation
    Inventor: W. Clark Dean
  • Patent number: 7569097
    Abstract: In subsea multiphase pumping systems, the use of a gas-liquid cylindrical cyclone (GLCC) as a separator to recirculate liquid from pump discharge to pump suction, especially during high gas inlet conditions from a multiphase petroleum stream. Further contemplated is protection of the pump from momentary high gas inlet conditions due to an incoming slug flow profile from a petroleum stream, via transforming a naturally varying multiphase petroleum stream into separated phases for measured distribution to the pump suction and ensuring a minimum liquid flow.
    Type: Grant
    Filed: May 26, 2006
    Date of Patent: August 4, 2009
    Assignee: Curtiss-Wright Electro-Mechanical Corporation
    Inventors: Clifford Howard Campen, Jose Luis Matos, James Roncace
  • Patent number: 7569098
    Abstract: A compact cyclonic separator is described which can handle mixtures of solids, liquids and gases in one vessel and provide continuous separation. The invention operates by providing tangential flow into a vertical cylindrical tube and utilizing the tangential flow and gravity to separate into a gas stream, a clean liquids stream, and a solid rich slurry mixture. Several embodiments for controlling the flow of the solid rich slurry mixture are described.
    Type: Grant
    Filed: January 19, 2006
    Date of Patent: August 4, 2009
    Assignee: Regency Technologies, LLC
    Inventor: Kenneth Doyle Oglesby
  • Patent number: 7559978
    Abstract: A system for gas-liquid separation in electrolysis processes is provided. The system includes a first compartment having a liquid carrier including a first gas therein and a second compartment having the liquid carrier including a second gas therein. The system also includes a gas-liquid separator fluidically coupled to the first and second compartments for separating the liquid carrier from the first and second gases.
    Type: Grant
    Filed: September 19, 2005
    Date of Patent: July 14, 2009
    Assignee: General Electric Company
    Inventors: Grigorii Lev Soloveichik, David Brandon Whitt
  • Patent number: 7540955
    Abstract: A cartridge for a water treatment system, effective to assist in the removal of contaminants by photocatalytic oxidation and by adsorption, includes a plurality of stacked disks, preferably made of a UV light transmissive material, which disks define circuitous flow paths for water being treated. In a preferred embodiment, the disk surfaces contacted by the water are provided with a coating of a catalyst, such as TiO2, activated by a UV light source positioned in the center of the cartridge.
    Type: Grant
    Filed: April 7, 2006
    Date of Patent: June 2, 2009
    Assignees: Pentair Filtration, Inc., Wisconsin Alumni Research Foundation
    Inventors: Gary L. Hatch, Michael D. Steinhardt, Michael J. Kurth, Marc A. Anderson
  • Patent number: 7540905
    Abstract: A deaerating and degassing system for a power plant condenser, comprising a condensate collector and optionally an air cooler, whereby the deaerating and degassing system includes a suction aggregate and a suction line for a steam-inert gas mixture and the suction line connects the condenser or, in case an air cooler is present, the air cooler of the condenser, to the suction aggregate. In the suction line, there is a direct-contact condensation device, for example, a packing column or a tray contact apparatus, through which the steam-inert gas mixture can flow in direct contact in a countercurrent to the chilled condensate from the condensate collector.
    Type: Grant
    Filed: March 29, 2005
    Date of Patent: June 2, 2009
    Assignee: Alstom Technology Ltd
    Inventors: Francisco Leonardo Blangetti, Hartwig E. Wolf
  • Patent number: 7540902
    Abstract: A slug flow separator facilitates the separation of a mixture flow into component parts. The separator includes an upper-tier elongate conduit, a lower-tier elongate conduit and a plurality of spaced apart connectors. Each of the upper and lower-tier elongate conduits has an outlet and at least one of the upper and lower-tier elongate conduits has an inlet for receiving the mixture flow. The upper and lower-tier elongate conduits also each have a plurality of openings such that one connector of the plurality of connectors may interconnect one of the upper-tier elongate conduit openings with a one of the lower-tier elongate conduit openings. The connectors enable communication of at least one of a liquid component and the at least one of another liquid component and a gas component of the mixture flow therebetween.
    Type: Grant
    Filed: November 21, 2005
    Date of Patent: June 2, 2009
    Assignee: Shell Oil Company
    Inventors: Jose Oscar Esparza, George John Zabaras
  • Patent number: 7537644
    Abstract: A method is provided for degassing a liquid. One step of the method includes providing a rotating packed bed (RPB) reactor. The RPB reactor includes a rotatable permeable element disposed within a chamber defining an interior region, at least one liquid inlet for infusing the liquid into the interior region, at least one gas outlet for removing a gas from the interior region, and at least one liquid outlet for removing a liquid from the interior region. The rotatable permeable element within the RPB reactor is caused to spin at a tangential velocity, and the liquid is then infused into the at least one liquid inlet at an inlet flow rate. Next, a vacuum is applied to the interior region of the RPB reactor via the at least one gas outlet to generate a liquid substantially free of the gas.
    Type: Grant
    Filed: June 29, 2007
    Date of Patent: May 26, 2009
    Assignee: GasTran Systems
    Inventors: Jonathan Park, Nelson Gardner
  • Patent number: 7537643
    Abstract: A method for treating a waste product from a chemical processing plant. Chemical processing plants such as oil refineries produce sour water waste that includes ammonia and hydrogen sulfide. The sour water is typically steam stripped to form a vapor stream including water, the ammonia and the hydrogen sulfide. The vapor stream is converted into a concentrated ammonium sulfide solution using a scrubber unit that includes a cooling and quenching column. Concentrating the byproducts provides for more efficient transportation of the concentrate from several refineries to a remote, centralized purification facility.
    Type: Grant
    Filed: September 23, 2005
    Date of Patent: May 26, 2009
    Assignee: PCS Nitrogen Fertilizer LP
    Inventors: Richard Neylon, Clark Bailey, Allen D. Bierle, Fred Elliot, Scott A. Bierle