Patents Examined by Douglas X. Rodriguez
  • Patent number: 11360154
    Abstract: According to an exemplary embodiment of the inventive test method, heat is externally applied to an electrochemical “trigger” test cell via a heating element that receives electrical current from a power supply that is characterized by approximately the same impedance as the trigger test cell. For instance, the power supply and the trigger cell can be same or similar cells. The trigger test cell is proximate “propagation-vulnerable” test cells in a cell pack. Because of the impedance-matching between the power supply and the trigger test cell, the ensuing propagative behavior is at least substantially attributable to the short-circuit current failure of the trigger cell as brought about by the externally applied heat. The energy and/or power characterizing the power supply's current at least approximately equates to the energy and/or power characterizing the trigger test cell's short circuit current. Exemplary inventive testing is propitiously representative of real-world propagative failure events.
    Type: Grant
    Filed: September 26, 2019
    Date of Patent: June 14, 2022
    Assignee: The United States of America, as represented by the Secretary of the Navy
    Inventors: Eric Bennet Shields, Gordon H. Waller
  • Patent number: 11353480
    Abstract: Unique systems, methods, techniques and apparatuses of a power line measurement device are disclosed. One exemplary embodiment is a measurement device comprising a measurement device structured to at least partially surround a segment of a power distribution line, the measurement device including a winding portion spaced apart from the segment of the power distribution line structured to receive magnetic flux from the power distribution line and to output data corresponding to a current flowing through the power distribution line; and a magnetic shield spaced apart from the measurement device and positioned radially outward from the winding portion relative to the segment of the power distribution line, the magnetic shield comprising a first section and a second section coupled to the first section at an obtuse angle, the magnetic shield being structured to reduce an amount of external flux from being received with the measurement device.
    Type: Grant
    Filed: April 2, 2020
    Date of Patent: June 7, 2022
    Assignee: ABB SCHWEIZ AG
    Inventors: Vivek Siddharth, Lei Wang, Jaroslaw Wojciech Chorzepa, Steve A. Shaw, Bandeep Singh, David Raschka
  • Patent number: 11346208
    Abstract: A method and system for electromagnetic ranging of a target wellbore. A method may comprise disposing an electromagnetic ranging tool in a wellbore, energizing a conductive member disposed in the target wellbore to create an electromagnetic field, measuring at least one component of the electromagnetic field from the target wellbore, performing at least two non-axial magnetic field measurements, performing at least one axial magnetic field measurement, calculating a processed non-axial magnetic field measurement using the at least two non-axial magnetic field measurements, calculating an end-of-pipe ratio with the processed non-axial magnetic field measurement and the at least one axial magnetic field measurement, and altering a course of the electromagnetic ranging tool based at least in part from the end-of-pipe ratio. A well ranging system may comprise a downhole assembly, a sensor comprising a first component and a second component, a drill string, and an information handling system.
    Type: Grant
    Filed: December 21, 2017
    Date of Patent: May 31, 2022
    Assignee: Halliburton Energy Services, Inc.
    Inventors: Yijing Fan, Burkay Donderici, Hsu-Hsiang Wu, Li Pan
  • Patent number: 11340267
    Abstract: A current detection device is configured by a current path through which a first current flows, a current path through which a second current flows, a switching element that switches the current paths and allows the first current and the second current to flow alternately, a common coil section through which an induction current flows by the first current and the second current, and a turn current path that alternates a first induction current flowing through the coil section by the first current and a second induction current flowing through the coil section by the second current.
    Type: Grant
    Filed: July 13, 2020
    Date of Patent: May 24, 2022
    Inventor: Hiroyuki Miyazaki
  • Patent number: 11340313
    Abstract: The invention relates to a method for examining a magnetic field source. In this case, the magnetic vector field emanating from the magnetic field source is detected in a first coordinate system and corresponding magnetic field data is generated. Furthermore, the geometrical body of the magnetic field source is geometrically detected in a second coordinate system and corresponding geometrical data is generated. Subsequently, the first and the second coordinate systems are transferred into a mutual coordinate system by means of a coordinate transformation and the magnetic field data and the geometrical data are combined within the mutual coordinate system in order to place the magnetic vector field of the magnetic field source and the geometrical body of the magnetic field source into a mutual positional relationship.
    Type: Grant
    Filed: November 14, 2019
    Date of Patent: May 24, 2022
    Assignee: Fraunhofer-Gesellschaft zur Forderung der angewandten Forschung e.V.
    Inventors: Philip Beran, Gerhard Tischlinger
  • Patent number: 11327137
    Abstract: The present disclosure relates to a 1D partial Fourier parallel magnetic resonance imaging method with a deep convolutional network and belongs to the technical field of magnetic resonance imaging.
    Type: Grant
    Filed: June 6, 2017
    Date of Patent: May 10, 2022
    Assignee: SHENZHEN INSTITUTES OF ADVANCED TECHNOLOGY
    Inventors: Shanshan Wang, Dong Liang, Ningbo Huang, Xin Liu, Hairong Zheng
  • Patent number: 11327117
    Abstract: An apparatus is provided for measuring the power of electrolytes at different positions of a flow battery by switching six-way valves without reconnecting channels. With the measurements at the positions, weighting is processed to obtain power corresponding to charging statuses for determining accurate power. The charging and discharging of voltage and current of the battery are controlled for constant operations with high efficiency. Consequently, the efficiency of power conversion is improved; energy consumption is reduced; and the battery is always run within a safe power-range for avoiding accidents or damages to the battery. In addition, the present invention is further applicable to a device monitoring the features of a battery unit. The six-way valves online monitor the power at center positions by switching. The values measured at different positions are aimed at the abnormality of the battery unit for processing adjustment or offline replacement to maintain best operation performance.
    Type: Grant
    Filed: September 8, 2020
    Date of Patent: May 10, 2022
    Assignee: Institute of Nuclear Energy Research, Atomic Energy Council, Executive Yuan, R.O.C.
    Inventors: Hung-Hsien Ku, Ning-Yih Hsu, Chin-Lung Hsieh, Yi-Hsin Hu, Qiao-Ya Chen
  • Patent number: 11313883
    Abstract: A probe station includes a base, a adaptor, a probe holder and a probe. The adaptor has a first portion and a second portion away from the first portion towards a first direction by a first length. The first portion connects to the base. A probe holder connects to the second portion and extends towards a second direction opposite to the first direction by a second length. The probe connects to an end of the probe holder away from the second portion and extends towards the second direction by a third length. A product of a thermal coefficient of the adaptor and the first length is equal to a sum of a product of a thermal coefficient of the probe holder and the second length and a product of a thermal coefficient of the probe and the third length.
    Type: Grant
    Filed: September 10, 2020
    Date of Patent: April 26, 2022
    Assignee: MPI CORPORATION
    Inventors: Yu-Hsun Hsu, Jhih-Wei Fang, Sebastian Giessmann
  • Patent number: 11307223
    Abstract: An inspection device for inspecting an inspection target substrate includes a probe card, a tester, a plurality of conductive lines, and a resistor. The probe card has probes to be in contact with the inspection target substrate. The tester is configured to transmit and receive electric signals for an inspection to and from the inspection target substrate through the probes. The conductive lines electrically connect the probe card with the tester, and at least a part of the conductive lines is electrically connected to the probes. The resistor is formed at the probe card and serves as an electrical resistor. The tester is further configured to measure a resistance of the resistor based on the electric signals transmitted and received through the conductive lines.
    Type: Grant
    Filed: April 7, 2020
    Date of Patent: April 19, 2022
    Assignee: TOKYO ELECTRON LIMITED
    Inventors: Jun Fujihara, Jun Mochizuki
  • Patent number: 11306992
    Abstract: A throwing mechanism that is located at an upper part of the chassis onto which at least one weight is attached and provides throwing the weight attached thereto. A base is located at a lower part of the chassis and onto which a weight is thrown by the throwing mechanism, at least one position adjuster is located on the base and provides aligning on the base the weight thrown onto the base so that it faces the throwing mechanism, and a control unit which enables to operate the position adjuster to move the base upwards so as to re-attach the weight to the throwing mechanism, and thus to test the throwing mechanism automatically.
    Type: Grant
    Filed: July 31, 2019
    Date of Patent: April 19, 2022
    Assignee: TUSAS—TURK HAVACILIK VE UZAY SANAYII ANONIM SIRKETI
    Inventors: Ali Akcay, Onur Imece, Sabri Senturk, Nihat Serkan Akcay
  • Patent number: 11300628
    Abstract: A method includes recording a branch current and a terminal voltage of each of two parallel connected cells of a battery pack during the battery pack being switched from a charging or discharging state through a rest state to a balance state, to obtain an internal resistance of each cell, and an open-circuit voltage (OCV) and a state of charge (SOC) of the battery pack in the balance state, to obtain an OCV and a SOC of each cell just before the battery pack is switched to the rest state; and obtaining an aging differential index according to the SOC of each cell just before the battery pack is switched to the rest state, the branch current of each cell just after the battery pack is switched to the rest state, and a rated capacity of the battery pack, to determine a relative aging level of the two cells.
    Type: Grant
    Filed: January 6, 2021
    Date of Patent: April 12, 2022
    Assignee: Simplo Technology Co., Ltd.
    Inventor: Yi-Ren Guo
  • Patent number: 11300701
    Abstract: The disclosure is directed to utility locators and associated antenna node support structure devices for allowing a utility locator to self-stand in an upright position without being held or otherwise supported by a user.
    Type: Grant
    Filed: December 17, 2018
    Date of Patent: April 12, 2022
    Assignee: SEESCAN, INC.
    Inventors: Mark S. Olsson, James F. Kleyn
  • Patent number: 11293950
    Abstract: A current sensor has: a magneto-resistive effect element which is arranged near a current line, to which a signal magnetic field is applied, the signal magnetic field being is induced by a current that flows in the current line, and which generates a magneto-resistive change in accordance with a change of the signal magnetic field; cancelling magnetic field generating means that is provided near the magneto-resistive effect element and that generates a cancelling magnetic field that cancels the signal magnetic field; a first soft magnetic body that is provided between the magneto-resistive effect element and the current line; and a pair of second soft magnetic bodies that are provided on both sides of the magneto-resistive effect element with regard to a magnetization detecting direction of the magneto-resistive effect element.
    Type: Grant
    Filed: June 5, 2018
    Date of Patent: April 5, 2022
    Assignee: TDK Corporation
    Inventors: Yuta Saito, Kenichi Takano, Hiraku Hirabayashi
  • Patent number: 11294001
    Abstract: An optical fiber-mounted field sensor for measuring an electric or magnetic field includes an optical fiber configured to receive light from a laser source, a polarizer, a polarization manipulator, electro-optical material or magneto-optical material adjacent to the polarization manipulator, and a high reflection coating. The polarizer is adjacent to an output of the fiber, while the polarization manipulator is adjacent to the polarizer and opposite of the optical fiber. The electro-optical material or magneto-optical material is adjacent to the polarization manipulator, and the high reflection coating is adjacent to the electro-optical material or magneto-optical material. An optical mainframe for sending and receiving optical beams to and from the optical fiber-mounted field sensor is also described.
    Type: Grant
    Filed: June 30, 2020
    Date of Patent: April 5, 2022
    Assignee: Advanced Fiber Sensors, Inc.
    Inventors: Kyoung Yang, John Whitaker
  • Patent number: 11287546
    Abstract: Embodiments relate to methods for assessing inaccessible pore volume for polymer flooding. The methods include utilizing nuclear magnetic resonance to monitor polymer-based fluid displacements into porous media. According to an embodiment, the method includes providing a core sample of a porous medium, determining a total pore volume of the core sample, introducing polymer solutions, obtaining nuclear magnetic resonance relaxation time distributions of water within the core sample, and assessing the inaccessible pore volume.
    Type: Grant
    Filed: June 29, 2020
    Date of Patent: March 29, 2022
    Inventors: Ahmad Mubarak Alharbi, Hyung Tae Kwak, Jun Gao
  • Patent number: 11275131
    Abstract: A test and measurement instrument, including at least one port configured to receive a signal from a device under test (DUT), the signal including a current signal acquired across a magnetic core of the DUT and a voltage signal acquired across the magnetic core of the DUT, and one or more processors. The one or more processors are configured to determine a hysteresis loop based on the current signal and the voltage signal, determine a magnetic flux of the magnetic core based on the voltage signal and the current signal for a number of sample points for each cycle, and determine a maximum magnetic flux for all cycles and a hysteresis loop cycle that corresponds to the maximum magnetic flux. A display configured to display at least one of the hysteresis loop, the signal received from the DUT, and the hysteresis loop cycle that corresponds to the maximum magnetic flux.
    Type: Grant
    Filed: October 10, 2019
    Date of Patent: March 15, 2022
    Assignee: Tektronix, Inc.
    Inventors: U N Vasudev, Suman Babu Alaparthi, Niranjan R Hegde, Krishna N H Sri
  • Patent number: 11262221
    Abstract: Method for determining a measuring offset of a rotor position sensor (2) assigned to a rotor (3) of an electric machine (5) comprising stator windings that are supplied by an inverter (6) converting a voltage at a DC link capacitor (7) into an AC current, wherein a candidate value for the measuring offset is determined, comprising the following steps: —controlling a power unit (9) of the inverter (6) to provide the current based on rotor position information (19) measured by the rotor position sensor (2) to the stator windings such that the DC link capacitor (7) of the inverter (6) is actively discharged, —evaluating a plausibility of the candidate value for the measuring offset based on a voltage of the DC link capacitor (7) detected while the power unit (9) is controlled to actively discharge the DC link capacitor (7), and —providing the candidate value as determined measuring offset, if a result of the evaluation is positive.
    Type: Grant
    Filed: December 19, 2018
    Date of Patent: March 1, 2022
    Assignee: VALEO SIEMENS EAUTOMOTIVE GERMANY GMBH
    Inventors: Bassel Sahhary, Andreas Walter
  • Patent number: 11262225
    Abstract: A flow sensor for a multi-phase medium flowmeter has a sensor carrier, and the sensor carrier has at least one first sensor array. The at least one first sensor array has a first permittivity sensor for determining a first permittivity of a multi-phase medium, a second permittivity sensor for determining a second permittivity of the medium, a density sensor for determining a density of the medium, and a first sensor axis. The first permittivity sensor, the second permittivity sensor, and the density sensor are arranged on the sensor carrier along the first sensor axis, and the first permittivity sensor and the second permittivity sensor are spaced apart with a permittivity sensor distance.
    Type: Grant
    Filed: June 19, 2018
    Date of Patent: March 1, 2022
    Assignee: KROHNE AG
    Inventors: Yves Louis Janssens, Cornelis Johannes Hogendoorn
  • Patent number: 11255703
    Abstract: A rotation angle detection device for accurately detecting a rotation angle is obtained even when electromagnetic noise due to an electrical component(s) and the like of an electric automotive vehicle is superimposed on detection signals of the rotation angle detection device.
    Type: Grant
    Filed: January 11, 2018
    Date of Patent: February 22, 2022
    Assignee: Mitsubishi Electric Corporation
    Inventors: Yoshimasa Nishijima, Masahiro Iezawa, Shinji Nishimura, Ryosuke Shigematsu
  • Patent number: 11255699
    Abstract: By a relative movement between an arrangement of at least three magnetic field sensors and a magnetic field generator, different discrete positional relationships can be produced between the same. A first signal is calculated as a first linear combination using at least two of three sensor signals. It is checked whether the first signal uniquely indicates one of the different discrete positional relationships. If yes, it is determined that the arrangement is located in the one discrete positional relationship. If no, a second signal is calculated as a second linear combination using at least two of the three sensor signals, at least one of which differs from the sensor signals used in the calculation of the first signal, and at least the second signal is used to determine in which of the different discrete positional relationships the arrangement is located relative to the magnetic field generator.
    Type: Grant
    Filed: June 16, 2020
    Date of Patent: February 22, 2022
    Inventors: Dirk Hammerschmidt, Robert Hermann