Patents Examined by Dustin Q Dam
  • Patent number: 9391255
    Abstract: The present invention generally provides multistage thermoelectric coolers and methods for their fabrication. For example, in one aspect, a multistage thermoelectric cooler is disclosed that includes at least two cooling stages, each of which comprises a p-type leg portion and an n-type leg portion coupled to form a p-n junction. The p-n junctions of the two stages are thermally and electrically coupled such that at least a portion of a current flowing, during operation of the device, through one stage is coupled to the other. Further, at least one of the p- or n-type leg portions of one stage forms a unitary structure with a corresponding p- or n-type leg portion of the other stage.
    Type: Grant
    Filed: January 30, 2007
    Date of Patent: July 12, 2016
    Assignee: MASSACHUSETTS INSTITUTE OF TECHNOLOGY
    Inventors: Gang Chen, Xiaoyuan Chen, Ronggui Yang
  • Patent number: 9337435
    Abstract: A dye sensitized solar cell, wherein a compacting compound whose molecular structure comprises a terminal group, a hydrophobic part and an anchoring group is co-adsorbed together with the dye on the semi-conductive metal oxide layer of the photoanode, forming a dense mixed self-assembled monolayer.
    Type: Grant
    Filed: April 29, 2004
    Date of Patent: May 10, 2016
    Assignee: Ecole Polytechnique Federal de Lausanne (EPFL)
    Inventors: Peng Wang, Shaik Mohammad Zakeeruddin, Michael Graetzel
  • Patent number: 9331216
    Abstract: Materials and methods for fabrication of rear tabbing, front busbar, and fine grid line layers for silicon based photovoltaic cells are disclosed. Materials include conductive metallization pastes that contain core-shell nickel based particles.
    Type: Grant
    Filed: September 23, 2014
    Date of Patent: May 3, 2016
    Assignee: PLANT PV, Inc.
    Inventors: Brian E. Hardin, Stephen T. Connor, James Randy Groves, Craig H. Peters
  • Patent number: 9105779
    Abstract: A method of fabricating a flexible photovoltaic film cell with an iron diffusion barrier layer. The method includes: providing a foil substrate including iron; forming an iron diffusion barrier layer on the foil substrate, where the iron diffusion barrier layer prevents the iron from diffusing; forming an electrode layer on the iron diffusion barrier layer; and forming at least one light absorber layer on the electrode layer. A flexible photovoltaic film cell is also provided, which cell includes: a foil substrate including iron; an iron diffusion barrier layer formed on the foil substrate to prevent the iron from diffusing; an electrode layer formed on the iron diffusion barrier layer; and at least one light absorber layer formed on the electrode layer.
    Type: Grant
    Filed: September 26, 2011
    Date of Patent: August 11, 2015
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Hariklia Deligianni, Lian Guo, Marinus Johannes Petrus Hopstaken, Maurice Mason, Lubomyr T Romankiw
  • Patent number: 9068274
    Abstract: Methods to etch a workpiece are described. In one embodiment, a workpiece is disposed within an etchant solution having a composition comprising a dilute acid and a non-ionic surfactant. An electric field is generated within the etchant solution to cause an anisotropic etch pattern to form on a surface of the workpiece.
    Type: Grant
    Filed: December 13, 2010
    Date of Patent: June 30, 2015
    Assignee: WD Media, LLC
    Inventor: Norbert Staud
  • Patent number: 8957306
    Abstract: A solar cell having a first subcell including a germanium (Ge) substrate having a diffusion region doped with n-type dopants including phosphorus and arsenic, wherein the upper portion of such diffusion region has a higher concentration of phosphorus (P) atoms than arsenic (As) atoms, and a second subcell including a layer of either gallium arsenide (GaAs) or indium gallium arsenide (InGaAs) disposed over the substrate.
    Type: Grant
    Filed: March 3, 2008
    Date of Patent: February 17, 2015
    Inventors: Mark A. Stan, Nein Y. Li, Frank A. Spadafora, Hong Q. Hou, Paul R. Sharps, Navid S. Fatemi
  • Patent number: 8859886
    Abstract: Methods of fabricating multijunction solar cells that may include providing a substrate, and depositing a nucleation first layer over and directly in contact with the substrate. The methods may also include depositing a second layer containing an arsenic dopant over the nucleation layer. The nucleation layer may serve as a diffusion barrier to the arsenic dopant such that diffusion of the arsenic dopant into the substrate is limited in depth by the nucleation layer. The methods may also include depositing a sequence of layers over the second layer forming at least one solar subcell.
    Type: Grant
    Filed: April 8, 2010
    Date of Patent: October 14, 2014
    Assignee: Emcore Solar Power, Inc.
    Inventors: Mark A. Stan, Nein Y. Li, Frank A. Spadafora, Hong Q. Hou, Paul R. Sharps, Navid S. Fatemi
  • Patent number: 8829335
    Abstract: A micron gap thermo-photo-voltaic device including a photovoltaic substrate, a heat source substrate, and a plurality of spacers separating the photovoltaic substrate from the heat source substrate by a submicron gap. Each spacer includes an elongated thin-walled structure disposed in a well formed in the heat source substrate and having a top surface less than a micron above the heat source substrate. Also disclosed are methods of making the spacers.
    Type: Grant
    Filed: May 5, 2011
    Date of Patent: September 9, 2014
    Assignee: The Charles Stark Draper Laboratory, Inc.
    Inventor: Paul Grieff
  • Patent number: 8816184
    Abstract: A thermoelectric bias voltage generator having a substrate, an active device formed in a semiconductor region of the substrate, and a thermoelectric junction disposed on the substrate and connected to the active device to provide the bias voltage for the active device.
    Type: Grant
    Filed: December 1, 2005
    Date of Patent: August 26, 2014
    Assignee: Raytheon Company
    Inventor: John P. Bettencourt
  • Patent number: 8779278
    Abstract: An air supported photovoltaic system includes a primary inflatable member with at least one facet thereon and a curved surface configured to rock the inflatable member and change the orientation of the facet to angle it towards the sun. A flexible array of photovoltaic cells is applied to the facet.
    Type: Grant
    Filed: September 23, 2010
    Date of Patent: July 15, 2014
    Assignee: Raytheon Company
    Inventor: Stephen R. Christensen
  • Patent number: 8721854
    Abstract: Disclosed is a control device, which controls an air-fuel ratio sensor that is mounted in an exhaust path of an internal-combustion engine. The air-fuel ratio sensor is capable of pumping oxygen in a gas. Normally (time t0-t1, time t3 or later), a positive voltage Vp1 is applied to a sensor element (FIG. 7A), and the air-fuel ratio is calculated (FIG. 7C) in accordance with a sensor current (FIG. 7B). A heater is driven after internal-combustion engine startup to heat the sensor element. In a process in which the sensor element temperature rises, a negative voltage Vm, which is oriented in a direction different from that of the positive voltage Vp1, is applied to the sensor element.
    Type: Grant
    Filed: July 1, 2004
    Date of Patent: May 13, 2014
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Keiichiro Aoki, Yusuke Suzuki, Yoshihiro Sakayanagi
  • Patent number: 8710355
    Abstract: Photovoltaic cells, including silicon solar cells, and methods and compositions for making such photovoltaic cells are provided. A silicon substrate having p-type silicon base and an n-type silicon layer is provided with a silicon nitride layer, an exchange metal in contact with the silicon nitride layer, and a non-exchange metal in contact with the exchange metal. This assembly is fired to form a metal silicide contact on the silicon substrate, and a conductive metal electrode in contact with the metal silicide contact. The exchange metal is from nickel, cobalt, iron, manganese, molybdenum, and combinations thereof, and the non-exchange metal is from silver, copper, tin, bismuth, lead, antimony, arsenic, indium, zinc, germanium, gold, cadmium, beryllium, and combinations thereof.
    Type: Grant
    Filed: November 13, 2009
    Date of Patent: April 29, 2014
    Assignees: E I du Pont de Nemours and Company
    Inventors: William J. Borland, Howard David Glicksman, Jon-Paul Maria
  • Patent number: 8697987
    Abstract: A solar cell has a photovoltaic element having a back electrical contact, and a front current-collection grid cap structure overlying and contacting the photovoltaic solar cell element. The front current-collection grid cap structure is made of a doped semiconductor material and has openings therethrough to the photovoltaic solar cell element. An anti-reflection layer formed of an anti-reflection material overlies and contacts the photovoltaic solar cell element in the openings of the front current-collection grid cap structure. An edge stripe of a cap-top protective material, preferably the same as the anti-reflection material, overlies and contacts each top grid-cap margin of the top cap structure but not a top grid-cap central region of the top cap-structure. A metallic electrical current collector overlies and contacts the top cap structure and at least some of the edge stripe, but does not contact the anti-reflection layer and does not contact the photovoltaic solar cell element.
    Type: Grant
    Filed: October 8, 2004
    Date of Patent: April 15, 2014
    Assignee: The Boeing Company
    Inventors: Hector L. Cotal, Raed A. Sherif
  • Patent number: 8685216
    Abstract: An apparatus for merging and mixing two droplets using electrostatic forces includes a substrate on which are disposed a first originating electrode, a center electrode, and a second originating electrode. The electrodes are disposed such that a first gap is formed between the first originating electrode and the center electrode and a second gap is formed between the second originating electrode and the center electrode. A dielectric material surrounds the electrodes on the substrate. A first droplet is deposited asymmetrically across the first gap, and a second droplet is deposited asymmetrically across the second gap. Voltage potentials are placed across the first gap and second gap, respectively, whereby each droplet is moved toward the other such that they collide together, causing the droplets to merge and mix, and causing oscillations within the collided droplet.
    Type: Grant
    Filed: December 21, 2004
    Date of Patent: April 1, 2014
    Assignee: Palo Alto Research Center Incorporated
    Inventors: Dirk De Bruyker, Michael I. Recht, Jürgen H. Daniel
  • Patent number: 8653357
    Abstract: A device and method wherein a thermo electric generator device is disposed between stacks of a multiple level device, or is provided on or under a die of a package and is conductively connected to the package. The thermo electric generator device is configured to generate a voltage by converting heat into electric power. The voltage which is generated by the thermo electric generator can be recycled back into the die itself, or to a higher-level unit in the system, even to a cooling fan.
    Type: Grant
    Filed: February 25, 2013
    Date of Patent: February 18, 2014
    Assignee: LSI Corporation
    Inventors: Zachary A. Prather, Steven E. Reder, Michael J. Berman
  • Patent number: 8648252
    Abstract: A high transmission low iron glass, that is highly oxidized, is provided for use in solar cells or the like. In certain example embodiments, the glass composition used for the glass is a low-iron type glass composition which is highly oxidized thereby permitting the glass to realize a combination of high visible transmission (Lta or Tvis), high ultraviolet (UV) and/or infrared (IR) transmission, and high total solar (TS) transmission. These features may be achieved without the need for antimony in certain example instances. The glass substrate used in a solar cell may be patterned in certain example embodiments of this invention.
    Type: Grant
    Filed: March 13, 2006
    Date of Patent: February 11, 2014
    Assignee: Guardian Industries Corp.
    Inventors: Scott V. Thomsen, Richard Hulme, Leonid M. Landa, Ksenia A. Landa
  • Patent number: 8585881
    Abstract: A device for creating microgradients in solution is disclosed. The device contains a microfluidic channel with openings at each end and two or more small apertures to a bath. Electrodes are placed in the openings at either end of the channel and an electrical power supply is connected to the electrodes. Several distinct current paths exist from one end of the channel to the other. For example current may flow from one electrode, through a portion of the channel, through an aperture into the bath, back through another aperture into the channel, and along another portion of the channel to the other electrode. Current flows along all possible connected paths when an electric field is applied along the channel and induces fluid flow into and out of the apertures in the channel. Fluid flow through the apertures results in the formation of microgradients in solution near the microfluidic channel device.
    Type: Grant
    Filed: September 10, 2004
    Date of Patent: November 19, 2013
    Assignee: Onda Via, Inc.
    Inventors: Mark C. Peterman, David M. Bloom
  • Patent number: 8506775
    Abstract: A system for testing for analytes in a sample of biological fluid includes a test strip that defines a cavity for receiving the sample. At least two sets of electrodes are adjacent the sample cavity, including one for measuring one property of the sample, and another for measuring one or more other properties of the sample, such as temperature and/or the presence or magnitude of confounding variables. The measurements are combined to yield the desired result. At least one set of working and counter electrodes each have a plurality of elongated “fingers” interdigitated with those of the other electrode in the set. The gaps between fingers can be quite small, so that the two electrode sets together can operate in a small measurement volume of sample. Additional electrodes can be included that measure the presence or sufficiency of the sample, and additional traces on the strip can act as configuration identifiers.
    Type: Grant
    Filed: June 18, 2004
    Date of Patent: August 13, 2013
    Assignee: Roche Diagnostics Operations, Inc.
    Inventors: Nigel Anthony Surridge, Paul Douglas Walling, Melani Sullivan, Vladimir Svetnik, Brian S. Hill
  • Patent number: 8502064
    Abstract: A hybrid system for generating electrical power.
    Type: Grant
    Filed: December 11, 2003
    Date of Patent: August 6, 2013
    Assignee: Philip Morris USA Inc.
    Inventor: Roberto Pellizzari
  • Patent number: 8426720
    Abstract: The present invention discloses a micro thermoelectric device and manufacturing method thereof, and the manufacturing method comprises the steps of providing a substrate and depositing a barrier layer on the substrate, using the barrier layer as a mask to etch a pattern on the barrier layer to form a plurality of openings, adopting a reactive ion etching (RIE) method to remove the barrier layer and smoothing the curvature of the corner of each groove, depositing a metal conductive wire layer, coating an adhesive layer in said each groove by a surface mount technology (SMT), placing a plurality of thermoelectric materials individually into each groove, repeating steps (a) to (f) to produce another substrate, and connecting the two substrates into an aligned position.
    Type: Grant
    Filed: July 30, 2004
    Date of Patent: April 23, 2013
    Assignee: Industrial Technology Research Institute
    Inventors: Chun-Kai Liu, Jen-Hau Cheng