Patents Examined by Edmondson
  • Patent number: 11965229
    Abstract: A metal magnetic particle provided with an oxide layer on a surface of an alloy particle containing Fe and Si. The oxide layer has a first oxide layer, a second oxide layer, a third oxide layer, and a fourth oxide layer. Also, in line analysis of element content by using a scanning transmission electron microscope-energy dispersive X-ray spectroscopy, the first oxide layer is a layer where Fe content takes a local maximum value, the second oxide layer is a layer where Fe content takes a local maximum value, the third oxide layer is a layer where Si content takes a local maximum value, and the fourth oxide layer is a layer where Fe content takes a local maximum value.
    Type: Grant
    Filed: March 15, 2021
    Date of Patent: April 23, 2024
    Assignee: Murata Manufacturing Co., Ltd.
    Inventors: Takuya Ishida, Makoto Yamamoto, Katsutoshi Uji, Yuya Ishida, Mitsuru Odahara
  • Patent number: 11958262
    Abstract: A tooling assembly, including a cermet tooling body and a plastic support structure operationally connected to the cermet tooling body. The plastic support structure at least partially encapsulates the cermet tooling body. The plastic support structure includes a plastic matrix portion and a plurality of high magnetic permeability metallic particles distributed throughout the plastic matrix portion. Each respective high magnetic permeability metallic particle has a magnetic permeability of at least 0.0001 H/m and each respective high magnetic permeability metallic particle has a relative magnetic permeability of about 8000. The plastic matrix portion is selected from the group consisting of high molecular mass polymers, thermoplastics, thermosetting polymers, amorphous plastics, crystalline plastics, resin-based materials, and combinations thereof.
    Type: Grant
    Filed: March 27, 2020
    Date of Patent: April 16, 2024
    Assignee: Innex Innovative Industries
    Inventor: Thomas Blaszczykiewicz
  • Patent number: 11958998
    Abstract: A composition including a plurality of quantum dots; a binder polymer; a thiol compound having at least two thiol groups; a polyvalent metal compound; a polymerizable monomer having a carbon-carbon double bond; a photoinitiator; and a solvent.
    Type: Grant
    Filed: May 5, 2021
    Date of Patent: April 16, 2024
    Assignees: SAMSUNG ELECTRONICS CO., LTD., SAMSUNG DISPLAY CO., LTD., SAMSUNG SDI CO., LTD.
    Inventors: Ha Il Kwon, Tae Gon Kim, Shang Hyeun Park, Eun Joo Jang, Shin Ae Jun, Garam Park
  • Patent number: 11952521
    Abstract: A process for preparing a Mn+4 doped phosphor of formula I Ax[MFy]:Mn+4??I includes combining a first solution comprising a source of A and a second solution comprising H2MF6 in the presence of a source of Mn, to form the Mn+4 doped phosphor; wherein A is Li, Na, K, Rb, Cs, or a combination thereof; M is Si, Ge, Sn, Ti, Zr, Al, Ga, In, Sc, Y, La, Nb, Ta, Bi, Gd, or a combination thereof; x is the absolute value of the charge of the [MFy] ion; y is 5, 6 or 7; and wherein a value of a Hammett acidity function of the first solution is at least ?0.9. Particles produced by the process may have a particle size distribution with a D50 particle size of less than 10 ?m.
    Type: Grant
    Filed: November 2, 2021
    Date of Patent: April 9, 2024
    Assignee: CURRENT LIGHTING SOLUTIONS, LLC
    Inventors: James Edward Murphy, Srinivas Prasad Sista, Samuel Joseph Camardello
  • Patent number: 11926773
    Abstract: Provided herein are organic-inorganic hybrid-perovskites, including metal halide perovskites having a 1D crystal structure. The metal halide perovskites may be luminescent. The metal halide perovskites may include a dopant, including an emitter dopant. Methods of forming metal halide perovskites, and devices including the metal halide perovskites also are provided.
    Type: Grant
    Filed: July 26, 2021
    Date of Patent: March 12, 2024
    Assignee: Florida State University Research Foundation, Inc.
    Inventors: Biwu Ma, Zhao Yuan, Chenkun Zhou
  • Patent number: 11912917
    Abstract: A method of manufacturing quantum dots includes placing nickel powder having a certain particle size, a precursor material, and an organic solvent into a container, maintaining a pressure in the container at a certain value, and synthesizing quantum dots by stirring the nickel powder, the precursor material, and the organic solvent in the container.
    Type: Grant
    Filed: May 20, 2021
    Date of Patent: February 27, 2024
    Assignee: AGENCY FOR DEFENSE DEVELOPMENT
    Inventors: Yu Song Choi, Tae Young Ahn, Min U Kim, Jang Hyeon Cho
  • Patent number: 11912911
    Abstract: Quantum dots surface-modified with a compound represented by Chemical Formula 1 or Chemical Formula 2, a curable composition including the quantum dots, a cured layer, and a color filter. In Chemical Formula 1 and Chemical Formula 2, each substituent is the same as defined in the specification.
    Type: Grant
    Filed: September 22, 2020
    Date of Patent: February 27, 2024
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Yonghee Kang, Jonggi Kim, Jihyeon Yim, Dongjun Kim, Misun Kim, Minjee Park, Bumjin Lee, Injae Lee, Mi Jeong Choi
  • Patent number: 11908601
    Abstract: There is provided a magnetic responsiveness composite material capable of increasing viscosity by applying a magnetic field when compounded together with a liquid in a composition. The magnetic responsive composite material comprises first particles as core particles composed of a nonmagnetic inorganic material and second particles composed of a magnetic material adhering to at least a part of surfaces of the first particles. A lipophilic treatment agent is applied to at least a part of surfaces of the second particles. The second particles satisfy a relationship of having a smaller average particle diameter than that of the first particles. A lipophilic treatment agent is preferably at least one kind selected from coupling agents and surfactants.
    Type: Grant
    Filed: April 13, 2021
    Date of Patent: February 20, 2024
    Assignee: SOMAR CORPORATION
    Inventors: Hirohisa Ishizaki, Akira Ochiai
  • Patent number: 11905198
    Abstract: A glass furnace including an additive-containing product including an additive selected from: phosphorus compounds other than glasses and vitroceramics, tungsten compounds other than glasses and vitroceramics, molybdenum compounds other than glasses and vitroceramics, iron in the form of metal, aluminum in the form of metal, silicon in the form of metal, and their mixtures, silicon carbide, boron carbide, silicon nitride, boron nitride, glasses including elemental phosphorus and/or iron and/or tungsten and/or molybdenum, vitroceramics including elemental phosphorus and/or iron and/or tungsten and/or molybdenum, and their mixtures, and having the following chemical analysis, exclusively of the additive, as a percentage by weight on the basis of the oxides: Cr2O3?2%, and Cr2O3+Al2O3+CaO+ZrO2+MgO+Fe2O3+SiO2+TiO2?90%, and Cr2O3+Al2O3+MgO?60%, the content by weight of additive being in the range 0.01% to 6%.
    Type: Grant
    Filed: December 20, 2018
    Date of Patent: February 20, 2024
    Assignee: SAINT-GOBAIN CENTRE DE RECHERCHES ET D'ETUDES EUROPEEN
    Inventors: Thibault Champion, Pierrick Vespa, Lionel Moitrier, Olivier Citti, Julien Pierre César Fourcade, Nabil Nahas
  • Patent number: 11905447
    Abstract: A cadmium free quantum dot including a core that includes a first semiconductor nanocrystal including zinc, tellurium, and selenium, and a semiconductor nanocrystal shell that is disposed on the core and includes a zinc chalcogenide, wherein the quantum dot further includes magnesium and the mole ratio of Te:Se is greater than or equal to about 0.1:1 in the quantum dot; a production method thereof; and an electronic device including the same.
    Type: Grant
    Filed: October 15, 2021
    Date of Patent: February 20, 2024
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Sungwoo Hwang, Yong Wook Kim, Soo Kyung Kwon, Seon-Yeong Kim, Ji-Yeong Kim
  • Patent number: 11897814
    Abstract: A rare earth aluminate sintered compact including rare earth aluminate phosphor crystalline phases and voids, wherein an absolute maximum length of 90% or more by number of rare earth aluminate phosphor crystalline phases is in a range from 0.4 ?m to 1.3 ?m, and an absolute maximum length of 90% or more by number of voids is in a range from 0.1 ?m to 1.2 ?m.
    Type: Grant
    Filed: August 4, 2021
    Date of Patent: February 13, 2024
    Assignee: NICHIA CORPORATION
    Inventors: Shozo Taketomi, Ryo Yamamoto, Tomomi Fujii, Toshiyuki Hirai
  • Patent number: 11895856
    Abstract: A quantum dot composition includes a quantum dot, a ligand to bind to a surface of the quantum dot, an additive having an amine group, and a precursor comprising an organometallic compound, the composition forming a modified quantum dot having a reformed surface characteristic. A light emitting element including the modified quantum dot may have improved lifespan, luminous efficiency, and material stability.
    Type: Grant
    Filed: June 8, 2020
    Date of Patent: February 6, 2024
    Assignee: Samsung Display Co., Ltd.
    Inventors: Yunku Jung, Minki Nam, Hyunmi Doh, Yunhyuk Ko, Sungwoon Kim, Jaehoon Kim, Myoungjin Park, Jae Hong Park, Junwoo Park
  • Patent number: 11888098
    Abstract: The present disclosure relates to a light-emitting composition containing a perovskite compound and inorganic fine particles.
    Type: Grant
    Filed: July 26, 2018
    Date of Patent: January 30, 2024
    Assignee: SUMITOMO CHEMICAL COMPANY, LIMITED
    Inventors: Shota Naito, Kentaro Mase
  • Patent number: 11879084
    Abstract: In the present disclosure embodiments, a phosphate phosphor including an activation center of trivalent chromium and a light emitting device are provided. The light emitting device includes a light source and the above mentioned phosphate phosphor, such that the phosphate phosphor is excited by the light source and emits a wide spectrum of the infrared light. The light emitting device with wide emission spectrum of the infrared light may be widely applied in detecting devices.
    Type: Grant
    Filed: November 25, 2020
    Date of Patent: January 23, 2024
    Assignee: Lextar Electronics Corporation
    Inventors: Chun-Che Lin, Chun-Han Lu, Yi-Ting Tsai, Yu-Chun Lee, Tzong-Liang Tsai
  • Patent number: 11873253
    Abstract: There is disclosed a piezoelectric ceramic having the composition: a[PbTiO3]-b[SrTiO3]-c[BiFeO3]-d[(KxBi1-x)TiO3]; wherein 0.4<x<0.6; 0.1<a<0.4; 0.01<b?0.2; c?0.05; d?0.01; and a+b+c+d=1 optionally comprising an A- or B-site metal dopant in an amount of up to 2 at. %.
    Type: Grant
    Filed: May 10, 2018
    Date of Patent: January 16, 2024
    Assignee: Xaar Technology Limited
    Inventors: Michael Watson, Angus Condie, Timothy Paul Comyn, Andrew Bell
  • Patent number: 11869693
    Abstract: A magnetoelectric multiferroic nanocomposite. The nanocomposite comprises a ferroelectric perovskite oxide and a rare-earth substituted mixed ternary transition metal ferrite of the formula A1?xBxRyFe2?yO4. The nanocomposite has a high dielectric constant, low dielectric loss, both stable over a wide frequency range. These properties may make the nanocomposite desirable for applications in microelectronic devices, sensors and antennas.
    Type: Grant
    Filed: May 7, 2021
    Date of Patent: January 9, 2024
    Assignee: Imam Abdulrahman Bin Faisal University
    Inventors: Yassine Slimani, Munirah Abdullah Almessiere, Abdulhadi Baykal
  • Patent number: 11869694
    Abstract: A preparation method of a perfluoropolyether-based magnetic liquid includes dispersing magnetic nanoparticles coated with graphene oxide into a solution of N,N-dimethylformamide to obtain solution A; dispersing a surfactant into dichloromethane, and adding triethylamine as a cosolvent to obtain solution B; mixing the solution A and the solution B uniformly, heating them under reflux and stirring them for a modification reaction; and after the modification reaction is completed, washing and drying a reaction product to obtain the modified magnetic nanoparticles coated with the graphene oxide; dispersing the modified magnetic nanoparticles coated with the graphene oxide into a base carrier liquid to prepare the perfluoropolyether-based magnetic liquid. The surfactant is a perfluoroalkylamine. The base carrier liquid is a perfluoropolyether oil. The modification reaction is performed at a temperature of 50 to 120° C. for a time period of 20 to 50 hours.
    Type: Grant
    Filed: June 20, 2023
    Date of Patent: January 9, 2024
    Assignee: Tsinghua University
    Inventors: Decai Li, Shilin Nie
  • Patent number: 11862372
    Abstract: The present invention relates to a composition for bonded magnets having good hot water resistance and a method of manufacturing the composition. The method of manufacturing a composition for bonded magnets includes: obtaining a first kneaded mixture by kneading a rare earth-iron-nitrogen-based magnetic powder and an acid-modified polypropylene resin; and obtaining a second kneaded mixture by kneading the first kneaded mixture with a polypropylene resin and an amorphous resin having a glass transition temperature of 120° C. or higher and 250° C. or lower, wherein, with respect to 100 parts by weight of the rare earth-iron-nitrogen-based magnetic powder, the amount of the acid-modified polypropylene resin is 3.5 parts by weight or greater and less than 10.4 parts by weight, and the total amount of the polypropylene resin and the amorphous resin is 0.35 part by weight or greater and less than 3.88 parts by weight.
    Type: Grant
    Filed: January 28, 2022
    Date of Patent: January 2, 2024
    Assignee: NICHIA CORPORATION
    Inventors: Shuichi Tada, Satoshi Yamanaka
  • Patent number: 11859118
    Abstract: Quantum dots that are cadmium-free and/or stoichiometncally tuned are disclosed, as are methods of making them. Inclusion of the quantum dots and others in a stabilizing polymer matrix is also disclosed. The polymers are chosen for their strong binding affinity to the outer layers of the quantum dots such that the bond dissociation energy between the polymer material and the quantum dot is greater than the energy required to reach the melt temperature of the cross-linked polymer.
    Type: Grant
    Filed: December 8, 2022
    Date of Patent: January 2, 2024
    Assignee: TECTUS CORPORATION
    Inventors: Lianhua Qu, Hunaid Nulwala
  • Patent number: 11858829
    Abstract: A ternary paraelectric having a Cc structure and a method of manufacturing the same are provided. The ternary paraelectric having a Cc structure includes a material having a chemical formula of A2B4O11 that has a monoclinic system, is a space group No. 9, and has a dielectric constant of 150 to 250, wherein “A” is a Group 1 element, and “B” is a Group 5 element. “A” may include one of Na, K, Li and Rb. “B” may include one of Nb, V, and Ta. The A2B4O11 material may be Na2Nb4O11 in which bandgap energy thereof is greater than that of STO. The A2B4O11 material may have relative density that is greater than 90% or more.
    Type: Grant
    Filed: March 16, 2020
    Date of Patent: January 2, 2024
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Giyoung Jo, Chan Kwak, Hyungjun Kim, Euncheol Do, Hyeoncheol Park, Changsoo Lee