Patents Examined by Elizabeth Eng
  • Patent number: 8841398
    Abstract: The present invention provides a process for producing an ?-olefin polymer comprising polymerizing or copolymerizing (a) C3 or higher ?-olefin(s) in the presence of an olefin polymerization catalyst comprising solid titanium catalyst component (I) containing titanium, magnesium, halogen, and a compound with a specific structure having two or more ether linkages and organometallic catalyst component (II) with high catalytic activity. In this process, particularly even in (co)polymerizing (a) higher olefin(s), demineralization is unnecessary. A 4-methyl-1-pentene-based polymer obtained by polymerization using the catalyst of the present invention is excellent in tacticity, transparency, heat resistance, and releasability, and the polymer is particularly suitable for a release film.
    Type: Grant
    Filed: August 6, 2010
    Date of Patent: September 23, 2014
    Assignee: Mitsui Chemicals, Inc.
    Inventor: Tooru Tanaka
  • Patent number: 8822366
    Abstract: The present invention provides an olefin polymerization catalyst, which is free of polyfunctional aromatic compounds and has a large particle diameter, and a solid titanium component (I) which forms the catalyst.
    Type: Grant
    Filed: October 31, 2008
    Date of Patent: September 2, 2014
    Assignee: Mitsui Chemicals, Inc.
    Inventors: Kazuhisa Matsunaga, Kazutaka Tsuru, Kazumitsu Kawakita, Takashi Jinnai, Tetsunori Shinozaki
  • Patent number: 8809220
    Abstract: A process for making a Ziegler-Natta-type catalyst precursor including contacting a Group 4 metal compound with one or more Titanium compounds selected from the group of TiCl3 (Al-activated or hydrogen-reduced), and Ti(OR)4 where R is ethyl, isopropyl or butyl in the presence of an alcohol solution having at least one C2-C4 alcohol and at least one of MgCl2 and magnesium compounds which form MgCl2 in the presence of the alcohol solution to form a catalyst precursor solution is provided. Also provided are catalysts made from the precursors produced by the process. Also provided are polymers made using the catalysts.
    Type: Grant
    Filed: April 13, 2010
    Date of Patent: August 19, 2014
    Assignee: Union Carbide Chemicals & Plastics Technology LLC
    Inventors: Robert J. Jorgensen, Burkhard E. Wagner
  • Patent number: 8728970
    Abstract: A solid catalyst component comprising the product of a process comprising (a) reacting a magnesium alcoholate of formula Mg(OR1)(OR2) compound, in which R1 and R2 are identical or different and are each an alkyl radical having 1 to 10 carbon atoms, with titanium tetrachloride carried out in a hydrocarbon at a temperature of 50-100° C., (b) subjecting the reaction mixture obtained in (a) to a heat treatment at a temperature of 110° C. to 200° C. for a time ranging from 3 to 25 hours (c) isolating and washing with a hydrocarbon the solid obtained in (b), said solid catalyst component having a Cl/Ti molar ratio higher than 2.5.
    Type: Grant
    Filed: August 2, 2010
    Date of Patent: May 20, 2014
    Assignee: Basell Polyolefine GmbH
    Inventors: Friedhelm Gundert, Martin Schneider, Joachim Berthold, Bernd Lothar Marczinke
  • Patent number: 8710162
    Abstract: Polymerization processes in a bulk loop reactor are described herein. In particular, a method of contacting a flow of metallocene with a flow of propylene is provided. This method includes directing the flow of metallocene towards a junction, directing the flow of propylene towards the junction and maintaining a portion of the flow of metallocene separate from a portion of the flow propylene within a portion of the junction downstream of the flow of propylene into the junction. In another embodiment, a method of introducing a quantity of antifouling agent into a catalyst mixing system is provided. In this embodiment a portion of the antifouling agent is introduced at or downstream of a point of contact of a stream of propylene with a stream of catalyst. The antifouling agent may be a member, alone or in combination with other members, selected from Stadis 450 Conductivity Improver, Synperonic antifouling agent, and Pluronic antifouling agent.
    Type: Grant
    Filed: May 3, 2011
    Date of Patent: April 29, 2014
    Assignee: Fina Technology, Inc.
    Inventors: Ronald Tharappel, Renaud Oreins, William Gauthier, David Attoe, Kevin McGovern, Michel Messiaen, David Rauscher, Kai Hortmann, Michel Daumerie
  • Patent number: 8697599
    Abstract: A method comprising (a) contacting a support and a chromium-containing compound to form chromium-containing support, (b) heat treating the chromium-containing support in an oxidizing atmosphere to form a treated support, (c) contacting the treated support with carbon monoxide to form a CO-contacted support, and (d) contacting the CO-contacted support with hydrogen to form a catalyst. A method comprising oxidizing a chromium-treated support to form a polymerization catalyst, contacting the polymerization catalyst with carbon monoxide to form a reduced polymerization catalyst, contacting the reduced polymerization catalyst with hydrogen to form an activated polymerization catalyst, and contacting the activated polymerization catalyst with ethylene in a reaction zone under suitable reaction conditions to form a random copolymer.
    Type: Grant
    Filed: February 17, 2011
    Date of Patent: April 15, 2014
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Elizabeth A. Benham, Max P. McDaniel, Kathy S. Collins, Stephen M. Wharry
  • Patent number: 8680222
    Abstract: The present invention relates to a process for the production of propylene polymers in the presence of a Ziegler-Natta catalyst comprising a titanium compound having at least one titanium-halogen bond, and a blend of a diether compound and a succinate compound as internal electron donor, all supported on a magnesium halide in active form, an organoaluminium compound and an optional external donor.
    Type: Grant
    Filed: June 21, 2007
    Date of Patent: March 25, 2014
    Assignee: Total Research & Technology Feluy
    Inventors: Alain Standaert, Jerome Gromada, David Vandewiele
  • Patent number: 8664342
    Abstract: Process for introducing a solid polymerization catalyst into a gas-phase fluidized bed using an injection device having an inner tube of internal cross-sectional area of 10 to 100 mm2 and an outer tube forming an annulus around the inner tube with a cross-sectional area of 1 to 10 times the internal cross-sectional area of the inner tube. The polymerization catalyst and a carrier gas are passed through the inner tube and into the gas-phase fluidized bed at a carrier gas linear velocity of 4 to 14 m/s and a carrier gas mass flow rate of 10-35 kg/h. A shielding gas is passed through the outer tube and into the gas-phase fluidized bed at a linear velocity of 1 to 10 times the carrier gas linear velocity through the inner tube and at a mass flow rate of 100-500 kg/h. No cooled recycle process gas is provided to the injection device.
    Type: Grant
    Filed: September 21, 2009
    Date of Patent: March 4, 2014
    Assignee: Ineos Commercial Services UK Limited
    Inventors: Bruno Bordais, Christohper James Kemp, Jose Andre Laille, Willy Lemesle
  • Patent number: 8653206
    Abstract: The invention relates to an improved process for manufacturing an olefin polymer composition, in particular polyethylene, that incorporates two or more reaction zones in an optimized configuration that ease product transitions and allows for improved reactor quality control.
    Type: Grant
    Filed: August 28, 2012
    Date of Patent: February 18, 2014
    Assignee: INEOS USA LLC
    Inventors: Mark A. Gessner, Michel Promel
  • Patent number: 8648001
    Abstract: A catalyst for polymerization of olefins formed from (A) a solid catalyst component containing magnesium, titanium, halogen, and an electron donor compound, (B) an organoaluminum compound shown by the formula, R6pAlQ3-p, and (C) an aminosilane compound shown by the formula, R3nSi(NR4R5)4-n; and a process for producing a catalyst for polymerization of olefins in the presence of the catalyst are provided. A novel aminosilane compound, a catalyst component for polymerization of olefins having a high catalytic activity, capable of producing polymers with high stereoregularity in a high yield, and exhibiting an excellent hydrogen response, a catalyst, and a process for producing olefin polymers using the catalyst are provided.
    Type: Grant
    Filed: November 4, 2011
    Date of Patent: February 11, 2014
    Assignee: Toho Titanium Co., Ltd.
    Inventors: Motoki Hosaka, Takefumi Yano, Maki Sato, Kohei Kimura
  • Patent number: 8636831
    Abstract: The present relates to a process for optimizing the recovery of unreacted monomers from a polymerization process, wherein said process comprises the steps of recovering a fluid stream generated by the separation of the polyolefin product from the polymerization fluid comprising unreacted monomers and optionally comonomers; contacting said fluid stream in an absorption zone with a scrub liquid comprising at least one C4-10 hydrocarbons, thereby absorbing at least a portion of the unreacted monomers in said scrub liquid; and withdrawing from said absorption zone (i) a vapor overhead comprising light gas and (ii) an absorber bottoms scrub liquid comprising said C4-10 hydrocarbons and said unreacted monomer; thereby recovering said unreacted monomer in said absorber bottoms scrub liquid comprising said C4-10 hydrocarbons.
    Type: Grant
    Filed: January 16, 2009
    Date of Patent: January 28, 2014
    Assignee: Total Petrochemicals Research Feluy
    Inventors: Bernard Van Der Schrick, Eric Damme
  • Patent number: 8633124
    Abstract: The invention relates to a process for the synthesis of spheroidal magnesium alkoxide having improved mechanical strength and narrow particle size distribution, the process comprising reacting magnesium metal, in the presence of iodine, with a mixture of alcohols by step-wise heating first in the range of 40° C. to 65° C. for a period of 2 hours and then in the range of 65° C. to 80° C. for a period of 1 hour, further by maintaining reaction temperature at 80° C. for a period of 6-10 hours, the vapors of the mixture produced during the reaction being condensed in an overhead condenser, hydrogen gas produced during the reaction being vented off and the mixture of alcohols left after the reaction being filtered and reused. The invention also relates to spheroidal magnesium alkoxide particles synthesized by the method, to the Ziegler natta procatalyst synthesized by using the alkoxide and to the polymer resin synthesized using the procatalyst.
    Type: Grant
    Filed: September 1, 2008
    Date of Patent: January 21, 2014
    Assignee: Reliance Industries Limited
    Inventors: Virendrakumar Gupta, Saurabh Singh, Umesh Makwana, Jomichan Joseph, Kamlesh Singala, Smitha Rajesh, Vallabhbhai Patel, Mukeshkumar Yadav, Gurmeet Singh
  • Patent number: 8633126
    Abstract: A solid, hydrocarbon-insoluble, catalyst component useful in polymerizing olefins, said catalyst component containing magnesium, titanium, and halogen, and further containing an internal electron donor having a structure: [R1—O—C(O)—O—]xR2 wherein R1 is independently at each occurrence, an aliphatic or aromatic hydrocarbon, or substituted hydrocarbon group containing from 1 to 20 carbon atoms; x is 2-4; and R2 is an aliphatic or aromatic hydrocarbon, or substituted hydrocarbon group containing from 1 to 20 carbon atoms, provided that there are from 3 to 4 atoms in the shortest chain connecting a first R1—O—C(O)—O— group and a second R1—O—C(O)—O— group.
    Type: Grant
    Filed: November 30, 2010
    Date of Patent: January 21, 2014
    Assignee: Dow Global Technologies LLC
    Inventors: Joseph N. Coalter, III, Tak W. Leung, Tao Tao, Kuanqiang Gao
  • Patent number: 8614162
    Abstract: Disclosed are catalyst compositions having an external electron donor which includes one or more of the following compositions: a phosphite, a phosphonite, a pyrophosphite, and/or a diphosphazane. Ziegler-Natta catalyst compositions containing the present external electron donor exhibit strong activity and produce propylene-based olefins with high isotacticity and high melt flow rate.
    Type: Grant
    Filed: December 11, 2012
    Date of Patent: December 24, 2013
    Assignee: Dow Global Technologies LLC
    Inventor: Joseph N. Coalter, III
  • Patent number: 8609571
    Abstract: Disclosed is a method for preparing a solid catalyst for polymerization of polypropylene. The method includes: a) reacting a magnesium halide compound with alcohol and then adding a phthalic acid compound thereto to prepare a magnesium compound solution; b) mixing an aliphatic or alicyclic hydrocarbon solvent with an aromatic hydrocarbon solvent to prepare a mixed solvent, dispersing a titanium compound in the mixed solvent, and then reacting the titanium compound dispersed with the magnesium compound solution prepared in step a), and heating to produce a support; and c) reacting the support with the titanium used before disperse in step b) compound and an electron donor to obtain a solid product. When a catalyst prepared by the present disclosure is used, polypropylene with high activity and high bulk density characteristics may be prepared.
    Type: Grant
    Filed: December 28, 2010
    Date of Patent: December 17, 2013
    Assignee: Lotte Chemical Corporation
    Inventors: Seong Soo Lim, Young Kook Kim
  • Patent number: 8592536
    Abstract: The invention refers to a process for preparing a Group 2 metal/transition metal olefin polymerization catalyst component in particulate form having improved polymerization properties due to the use of H2 during catalyst component preparation and the use of such catalyst components in a process for polymerizing olefins.
    Type: Grant
    Filed: June 20, 2012
    Date of Patent: November 26, 2013
    Assignee: Borealis AG
    Inventors: Timo Leinonen, Peter Denifl, Anssi Haikarainen
  • Patent number: 8569195
    Abstract: The present invention relates to catalyst systems containing solid catalyst components comprising titanium, magnesium, halogen and an internal electron donor compound having at least one ether group and at least one ketone group; organoaluminum compounds and alkyl benzoate derivatives as external electron donors. The present invention also relates to methods of making the catalyst systems, and methods of polymerizing or copolymerizing alpha-olefins using the catalyst systems.
    Type: Grant
    Filed: February 24, 2010
    Date of Patent: October 29, 2013
    Assignee: BASF Corporation
    Inventor: Main Chang
  • Patent number: 8551903
    Abstract: Disclosed is a process for producing a procatalyst composition having an amide ester internal electron donor. The process includes pre-halogenating a procatalyst precursor before reaction with the amide ester and forming the procatalyst composition. Ziegler-Natta catalyst compositions containing the present procatalyst composition exhibit improved catalyst activity and/or improved catalyst selectivity and produce propylene-based olefins with broad molecular weight distribution.
    Type: Grant
    Filed: February 24, 2011
    Date of Patent: October 8, 2013
    Assignee: Dow Global Technologies LLC
    Inventors: Linfeng Chen, Clark C. Williams, Tak W. Leung, Tao Tao, Kuanqiang Gao, James X. Shu
  • Patent number: 8541333
    Abstract: A catalyst component for olefin polymerization comprising an ?-cyanosuccinate compound as an internal electron donor, a catalyst comprising the catalyst component, and use of the catalyst in olefin polymerization. When used in propylene polymerization, the catalyst can exhibit good catalytic activity and good hydrogen response, and the resulting polymer can have a good isotacticity and a good molecular weight distribution.
    Type: Grant
    Filed: August 13, 2010
    Date of Patent: September 24, 2013
    Assignees: China Petroleum & Chemical Corporation, Beijing Research Institute of Chemical Industry, China Petroleum & Chemical Corporation
    Inventors: Lunjia Xie, Yongtai Ling, Yu Tian, Zaixing Feng, Siyuan Zhao, Qing Hu, Zhufang Sun, Yu Kang
  • Patent number: 8536277
    Abstract: A novel process for reducing the molecular weight of nitrile rubber in the presence of specific catalyst systems containing the metathesis catalyst and also a specific addition of fluorine-containing boron compounds is provided.
    Type: Grant
    Filed: June 23, 2009
    Date of Patent: September 17, 2013
    Assignee: LANXESS Deutschland GmbH
    Inventors: Julia Marie Mueller, Oskar Nuyken, Werner Obrecht