Patents Examined by Elizabeth K So
  • Patent number: 10105174
    Abstract: An electrosurgical system includes an electrosurgical instrument coupled to an electrosurgical generator. The electrosurgical system may include a first sensor and a second sensor, which are configured to detect redundant tissue properties and output a signal corresponding thereto. The electrosurgical system has a signal processing circuit for receiving and modifying the output signal from the second sensor. The electrosurgical generator may include a controller for receiving an output signal from the first sensor and a processed signal from the signal processing circuit. The controller compares the two signals received and shuts down the system based on the comparison of the first sensor and a processed signal.
    Type: Grant
    Filed: June 28, 2016
    Date of Patent: October 23, 2018
    Assignee: COVIDIEN LP
    Inventor: James E. Krapohl
  • Patent number: 10086121
    Abstract: A catheter pump is provided that includes a rotatable impeller and an elongate cannula. The elongate cannula has a mesh that has a plurality of circumferential members disposed about the impeller. The elongate cannula has a plurality of axial connector extending between a proximal side of a distal circumferential member and a distal side of a proximal circumferential member. The circumferential members are radially self-expandable. The cannula is configured to minimize fracture within at least in the distal zone of the mesh as the elongated cannula moves into a sheathing device.
    Type: Grant
    Filed: June 3, 2016
    Date of Patent: October 2, 2018
    Assignee: TC1 LLC
    Inventors: Keif M. Fitzgerald, Richard L. Keenan, William J. Harrison
  • Patent number: 10086193
    Abstract: Apparatus for securing a therapy delivery device relative to a burr hole and method for making same. In one embodiment, the apparatus includes a base for seating in or near the burr hole. The apparatus may further include a stabilizer that may be engaged with the therapy delivery device. The stabilizer may include a surface coating or treatment operable to enhance frictional engagement with the therapy delivery device.
    Type: Grant
    Filed: October 7, 2010
    Date of Patent: October 2, 2018
    Assignee: Medtronic, Inc.
    Inventors: Gregory T. Schulte, Matthew H. Adams, Shahn S. Sage, Lynn M. Otten
  • Patent number: 10080518
    Abstract: In a first aspect, a method is provided for determining a level of wakefulness of a driver of a vehicle using a mobile telephone. The method includes (a) employing a wearable monitor to detect a biometric parameter of a user while the user is driving a vehicle; (b) communicating biometric parameter information from the wearable monitor to a mobile telephone of the user while the user is driving the vehicle; (c) employing the mobile telephone to obtain a level of wakefulness of the user while the user is driving the vehicle, the level of wakefulness of the user being determined based on biometric parameter information received from the wearable monitor; and (d) if the level of wakefulness determined for the user is below a predetermined level of wakefulness, employing the mobile telephone to attempt to increase the level of wakefulness of the user. Numerous other aspects are provided.
    Type: Grant
    Filed: August 24, 2014
    Date of Patent: September 25, 2018
    Inventors: Brian M. Dugan, Valerie G. Dugan
  • Patent number: 10076281
    Abstract: A sleep monitoring device (100) is disclosed for measuring a biophysical variable (131) of a living-being (150), comprising at least two pressure sensors (101-103) spatially arranged in a predefined planar geometry. The living-being rests on the supporting layer (199) contacted by the sensors that generate sensor signals in response to pressure caused by the living being via the supporting layer. A processing unit (110) determines the position of the living-being on the supporting layer based on differences between the sensor signals; a magnitude attenuation factor is determined based on the position of the living-being and a position of a sensor; the biophysical variable is determined from a sensor signal generated by that sensor, including a magnitude correction based on the magnitude attenuation factor. The effect of the invention is that only few sensors are needed to measure a biophysical variable accurately, irrespective of the living-being's position on the supporting layer.
    Type: Grant
    Filed: November 27, 2014
    Date of Patent: September 18, 2018
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Igor Berezhnyy, Erik Gosuinus Petrus Schuijers, Pedro Miguel Fonseca
  • Patent number: 10065040
    Abstract: A method to provide electrical stimulation therapy to stabilize ventricular rate of a heart during episodes of atrial fibrillation. The stimulation therapy may be a plurality of stimulation pulses delivered to the AV node during the AV node refractory period following the sensing of an atrial event.
    Type: Grant
    Filed: December 2, 2014
    Date of Patent: September 4, 2018
    Assignee: PACESETTER, INC.
    Inventors: Euljoon Park, You-Ho Kim, Taraneh Ghaffari Farazi
  • Patent number: 10049182
    Abstract: Health monitoring devices allow for monitoring of the vital signs of a subject. Wireless devices can enable a subject's cardiac and/or respiratory functions to be monitored remotely, e.g. without the subject being attached to bedside equipment. A cardiac monitoring device may include a substrate, electrodes for measuring ECG signals, and an electronics module including a data processor and a wireless transmitter. The electronics module is sealed within the substrate and arranged to receive the measured ECG signals. Each ECG signal associated with a heartbeat is processed in the data processor to provide key data relating to that heartbeat. The key data may include the temporal position of a characteristic feature in the ECG signal. The key data is provided to the wireless transmitter for transmission.
    Type: Grant
    Filed: February 3, 2012
    Date of Patent: August 14, 2018
    Assignee: ISANSYS LIFECARE LIMITED
    Inventors: Anthony Chefles, Rory Morrison, Rebecca Weir, Keith Errey
  • Patent number: 10039468
    Abstract: The present disclosure generally relates to systems and method of a noninvasive electrocardiographic (ECG) technique for characterizing cardiac chamber size and cardiac mechanical function. A mathematical analysis of three-dimensional (3D) high resolution ECG data may be used to estimate chamber size and cardiac mechanical function. For example, high-resolution mammalian ECG signals are analyzed across multiple leads, as 3D orthogonal (X,Y,Z) or 10-channel data for 30 to 1400 seconds to derive estimates of cardiac chamber size and cardiac mechanical function. Multiple mathematical approaches may be used to analyze the dynamical and geometrical properties of the ECG data.
    Type: Grant
    Filed: November 12, 2013
    Date of Patent: August 7, 2018
    Assignee: Analytics For Life Inc.
    Inventors: Sunny Gupta, Timothy William Fawcett Burton, Shyamlal Ramchandani, Derek Vincent Exner
  • Patent number: 10022533
    Abstract: The present invention relates to a reinforcement means (400) for a lead (300), especially a lead (300) for neural applications, preferably a lead (300) for a neurostimulation and/or neurorecording system, wherein the reinforcements means (400) has at least predetermined and/or customizable bending motion capabilities and/or is configured such that the minimum bending radius of the lead (300) is at least partially limited. Furthermore, the present invention relates to a lead, a neurostimulation and/or neurorecording system and an interlocking annular element for a reinforcement means.
    Type: Grant
    Filed: March 27, 2014
    Date of Patent: July 17, 2018
    Assignee: Medtronic Bakken Research Center B.V.
    Inventor: Sébastien Jody Ouchouche
  • Patent number: 9993650
    Abstract: A filter feedthrough is described. The filter feedthrough includes a conductive ferrule supporting a dielectric substrate having a body fluid side and a device side. At least one via hole provided with a conductive fill is disposed through the dielectric substrate from the body fluid side to the device side. At least one MLCC-type capacitor is supported by the dielectric substrate. A first circuit trace couples from an active metallization connected to the active electrode plates of the capacitor to conductive fill in the via hole. A second circuit trace couples from the ground electrode plate of the capacitor to a metallization contacting an outer surface of the dielectric substrate. Then, a conductive material couples from the ground metallization to the ferrule to thereby electrically couple the capacitor to the ferrule.
    Type: Grant
    Filed: December 5, 2016
    Date of Patent: June 12, 2018
    Assignee: Greatbatch Ltd.
    Inventors: Keith W. Seitz, Robert A. Stevenson, Christine A. Frysz, Thomas Marzano
  • Patent number: 9980768
    Abstract: To achieve a safe transition from the ignition of a plasma in incision mode to the combustion of the plasma during a cutting mode, an electromedical device to supply an instrument with electrical power is equipped with an ignition recognition mechanism formed by a sensor device. This ignition recognition mechanism switches the HF generator provided in the device from an incision operating mode to a cutting operating mode as soon as ignition is recognized. The switching is brought about by the switching of an HF modulation from a low crest factor in the incision operating mode to a high crest factor in the cutting operating mode.
    Type: Grant
    Filed: April 18, 2012
    Date of Patent: May 29, 2018
    Assignee: ERBE ELEKTROMEDIZIN GMBH
    Inventor: Erich Werner
  • Patent number: 9974964
    Abstract: The disclosure describes implantable medical systems that respond to occurrence of a lead-related condition by utilizing an elongated coil electrode in defining an alternative pacing therapy vector to maintain optimal drain of an IMD power supply. An exemplary system includes a medical electrical lead having an elongated electrode and an improved sensing and therapy delivery circuitry to provide the alternative pacing therapy vector responsive to the lead-related conditions. The system reconfigures the operation of the sensing and therapy delivery circuitry triggered by the switch to the alternative pacing therapy vector.
    Type: Grant
    Filed: July 13, 2015
    Date of Patent: May 22, 2018
    Assignee: Medtronic, Inc.
    Inventors: Gonzalo Martinez, Mark T Marshall, Kevin R Seifert
  • Patent number: 9956401
    Abstract: A seed assembly for delivery to an interior of a heart includes an electrical stimulation circuit for delivering an electrical stimulus to cardiac tissue. A first electrode assembly is mechanically and electrically coupled to the seed assembly via a micro lead, the first electrode assembly configured to deliver the electrical stimulus generated by the electrical stimulation circuit to the cardiac tissue. The seed assembly and the first electrode assembly are sized and shaped to fit entirely within the heart.
    Type: Grant
    Filed: January 23, 2014
    Date of Patent: May 1, 2018
    Assignee: BOSTON SCIENTIFIC SCIMED, INC.
    Inventors: Roger Hastings, Daniel M. Lafontaine, Michael J. Pikus, Martin R. Willard
  • Patent number: 9955270
    Abstract: Methods and systems for fitting a bone conduction device are provided herein. These methods and systems comprise obtaining dynamic range parameters for a bone conduction device. These dynamic range parameters may include threshold and a maximum comfort levels for the bone conduction device. Once determined, the bone conduction device may use the dynamic range parameters in applying stimulation to a recipient.
    Type: Grant
    Filed: March 31, 2009
    Date of Patent: April 24, 2018
    Assignee: Cochlear Limited
    Inventor: John Parker
  • Patent number: 9943359
    Abstract: A surgical instrument includes a reusable component and a limited-use component. The reusable component includes a first electrical contact. The limited-use component is releasably engagable with the reusable component. The limited-use component includes a second electrical contact configured to electrically couple to the first electrical contact to establish electrical communication between the reusable component and the limited-use component. The second electrical contact is movable from a first position, wherein the second electrical contact is positioned to electrically couple to the first electrical contact upon engagement of the limited-use component and the reusable component to one another, to a second position, wherein the second electrical contact is positioned to inhibit electrical coupling to the first electrical contact upon engagement of the limited-use component and the reusable component to one another.
    Type: Grant
    Filed: April 30, 2012
    Date of Patent: April 17, 2018
    Assignee: Covidien LP
    Inventor: William O. Reid, Jr.
  • Patent number: 9936889
    Abstract: A method of controlling a threshold for detecting peaks of physiological signals includes: obtaining a physiological signal measured from a person being examined; determining whether a peak of the physiological signals is detected based on a result of comparing the physiological signals with a threshold; and controlling the threshold based on a minimum threshold and either the threshold or a feature value of the detected peak based on a result of the determining. When a threshold for detecting peaks of physiological signals is controlled, even if an interval between the peaks is irregular or there is a large difference in values of the peaks, the peaks can be accurately detected.
    Type: Grant
    Filed: March 1, 2013
    Date of Patent: April 10, 2018
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Chang-mok Choi, Youn-ho Kim, Kun-soo Shin
  • Patent number: 9937341
    Abstract: A lead is configured and arranged for brain stimulation. The lead includes a proximal end and a distal end. The proximal end includes a plurality of terminals disposed at the proximal end. The distal end has a non-circular transverse cross-sectional shape and includes a plurality of electrodes disposed at the distal end. A plurality of conductive wires electrically couple at least one of the plurality of electrodes to at least one of the plurality of terminals.
    Type: Grant
    Filed: February 13, 2015
    Date of Patent: April 10, 2018
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Anne M. Pianca, Courtney C. Lane, James C. Makous, Andrew DiGiore, Ellis Garai
  • Patent number: 9931509
    Abstract: A pacing mode is provided, in one embodiment, that permits missed or skipped ventricular beats. The mode monitors a full cardiac cycle (A-A interval) for the presence of intrinsic ventricular activity. If ventricular activity is present, a flag is set that is valid for the next cardiac cycle. At the beginning of the next cardiac cycle, the device determines if the flag is present. So long as the flag is present, the device will not deliver a ventricular pacing pulse in that cycle, even if there is no intrinsic ventricular activity. If there is no flag present at the start of a given cardiac cycle, a ventricular pacing pulse is delivered and this ventricular activity sets a flag for the subsequent cardiac cycle.
    Type: Grant
    Filed: March 5, 2012
    Date of Patent: April 3, 2018
    Assignee: Medtronic, Inc.
    Inventor: John C. Stroebel
  • Patent number: 9919089
    Abstract: A heart pump includes a rotative impeller partly inserted into the systemic ventricle, this rotative impeller being equipped with a membrane sutured to the outer wall of the heart in such a way as to secure the rotative impeller to the wall of the heart, a housing arranged inside the systemic ventricle in such a way as to draw up then discharge blood, a motor connected to the housing and arranged partly outside the systemic ventricle in such a way as to facilitate maintenance; an integrated management unit in the epigastric region including a power supply and a rotative impeller control unit; and a wired link between the management unit and the rotative impeller.
    Type: Grant
    Filed: September 21, 2015
    Date of Patent: March 20, 2018
    Assignee: FINEHEART
    Inventor: Stephane Garrigue
  • Patent number: 9913973
    Abstract: The present invention generally relates to the use of electrodes with human and animal subjects. More particularly, the present invention relates to electrical contacts which are applied to the surface of a subject for the purpose of delivering transranial direct current stimulation (TDCS).
    Type: Grant
    Filed: April 23, 2013
    Date of Patent: March 13, 2018
    Assignee: Yani Skincare, LLC
    Inventor: Jamal S. Yanaki