Patents Examined by Emily Le
  • Patent number: 8741170
    Abstract: The present invention relates to ferrite particles for bonded magnet, having a volume-average particle diameter of 2.1 to 2.7 ?m and a particle diameter x90 of 4.3 to 5.4 ?m wherein the x90 represents a particle diameter at which a cumulative percentage of particles under sieve (undersize particles) based on a volume thereof is 90%, when determined from a particle size distribution thereof measured by using a laser diffraction type particle size distribution measuring apparatus.
    Type: Grant
    Filed: October 2, 2009
    Date of Patent: June 3, 2014
    Assignee: Toda Kogyo Corporation
    Inventors: Yasuhiko Fujii, Minoru Ohsugi, Yasushi Nishio, Yosuke Koyama, Shigeru Takaragi
  • Patent number: 8734681
    Abstract: Luminescent materials and methods of forming such materials are described herein. In one embodiment, a luminescent material has the formula: [AaSnbXxX?x?X?x?], where the luminescent material is polycrystalline; A is included in the luminescent material as a monovalent cation; X, X?, and X? are selected from fluorine, chlorine, bromine, and iodine; a is in the range of 1 to 5; b is in the range of 1 to 3; a sum of x, x?, and x? is in the range of 1 to 5; and at least X? is iodine, such that x?/(x+x?+x?)??.
    Type: Grant
    Filed: April 2, 2013
    Date of Patent: May 27, 2014
    Assignee: OMNIPV, Inc.
    Inventors: Nemanja Vockic, Jian Jim Wang, William Pfenninger, John Kenney
  • Patent number: 8734669
    Abstract: A magnetic induction foam molding apparatus comprising: a pair of electromagnet parts, each of which has a core part composed of a ferromagnet and a coil part placed on the outer circumference surface of the core part, and that are placed so as to face each other and depart from each other with a predetermined distance in the axis direction of the core part; a foaming mold interposed between the pair of electromagnet parts, inside which a cavity is defined; and a yoke part connecting back surfaces of the respective core parts of the pair of the electromagnet pats so as to form a magnetic path between a pair of the back surfaces. In the cavity of the foaming mold, a uniform magnetic field is formed.
    Type: Grant
    Filed: August 21, 2008
    Date of Patent: May 27, 2014
    Assignees: Tokai Rubber Industries, Ltd., National University Corporation Nagoya Institute of Technology
    Inventors: Koji Tomiyama, Yasushi Ido
  • Patent number: 8734670
    Abstract: A lead-free piezoelectric ceramic material has the general chemical formula xBi(A0.5Ti0.5)O3-y(Bi0.5K0.5)TiO3-z(Bi0.5Na0.5)TiO3, wherein x+y+z=1, x?0, and A=Ni or Mg.
    Type: Grant
    Filed: September 30, 2010
    Date of Patent: May 27, 2014
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: Yu Hong Jeon, David Cann, Eric Patterson, Parkpoom Jarupoom, Brady Gibbons, Peter Mardilovich
  • Patent number: 8728426
    Abstract: The invention relates to a hybrid reverse flow catalytic apparatus having two reaction zones: a homogeneous reaction zone in porous ceramic and a heterogeneous reaction zone with catalyst, arranged in two different catalyst beds. A first catalytic bed located in a central region of the reactor is provided with a low activity catalyst and a second catalyst bed located in a peripheral region of the reactor is provided with a high activity catalyst. The provision of two catalyst beds containing different catalysts reduces the effect of radial temperature gradients in the reactor and improves the overall efficiency of the reactor. The invention also relates to method of performing catalytic and thermochemical reactions in said apparatus.
    Type: Grant
    Filed: November 12, 2013
    Date of Patent: May 20, 2014
    Assignee: Her Majesty the Queen in right of Canada, as represented by the Minister of Natural Resources
    Inventor: Hristo Sapoundjiev
  • Patent number: 8728427
    Abstract: A method for the manufacture of concentrated phosphorous acid starting from pure P4O6 is disclosed. The P4O6 is hydrolyzed, preferably under stirring in water in the presence of a homogeneous Broensted acid catalyst while maintaining in the hydrolysis/reaction medium a pH below 5 whereby the free water level, at the completion of the hydrolysis, is in the range from 0 to 40%.
    Type: Grant
    Filed: April 24, 2009
    Date of Patent: May 20, 2014
    Assignee: Straitmark Holding AG
    Inventors: Patrick Notté, Albert Devaux
  • Patent number: 8716170
    Abstract: An eggshell catalyst useful for a Fischer-Tropsch (FT) synthesis or other reactions comprises a homogeneously dispersed transition metal and a promoter situated in an active phase in a precisely selected outer region of a catalyst pellet. The active phase region is controlled to a specific depth, which permits the control of the catalysts selectivity, for example, the size of the hydrocarbon chains formed in the FT process. A method of preparing these eggshell catalysts involves a non-aqueous synthesis where polar and non-polar solvents of relatively low vapor pressure are employed to define the depth of penetration of metal species in a refractory oxide substrate, which is followed by fixing and activating metallic catalytic species in the structure by calcination of the catalyst particles.
    Type: Grant
    Filed: August 23, 2010
    Date of Patent: May 6, 2014
    Assignee: University of South Florida
    Inventors: John T. Wolan, Ali Syed Gardezi
  • Patent number: 8709274
    Abstract: There is provided novel curable ink compositions comprising surfactant-coated magnetic metal nanoparticles. In particular, there is provided ultraviolet (UV) curable gel inks comprising at least a coated magnetic metal nanoparticles, one curable monomer, a radiation activated initiator that initiates polymerization of curable components of the ink, and optionally a gellant. The inks may also include optional colorants and one or more optional additives. These curable UV ink compositions can be used for ink jet printing in a variety of applications.
    Type: Grant
    Filed: March 17, 2011
    Date of Patent: April 29, 2014
    Assignee: Xerox Corporation
    Inventors: Gabriel Iftime, Naveen Chopra, Barkev Keoshkerian, Peter G. Odell, Marcel P. Breton
  • Patent number: 8703016
    Abstract: A phosphor material is presented that includes a blend of a first phosphor, a second phosphor and a third phosphor. The first phosphor includes a composition having a general formula of ((Sr1?zMz)1?(x+w)AwCex)3(Al1?ySiy)O4+y+3(x?w)F1?y?3(x?w), wherein 0<x?0.10, 0?y?0.5, 0?z?0.5, 0?w?x, A comprises Li, Na, K, or Rb; and M comprises Ca, Ba, Mg, Zn, or Sn. The second phosphor includes a complex fluoride doped with manganese (Mn4+), and the third phosphor include a phosphor composition having an emission peak in a range from about 520 nanometers to about 680 nanometers. A lighting apparatus including such a phosphor material is also presented. The light apparatus includes a light source in addition to the phosphor material.
    Type: Grant
    Filed: June 28, 2011
    Date of Patent: April 22, 2014
    Assignee: General Electric Company
    Inventors: Prasanth Kumar Nammalwar, Anant Achyut Setlur, Digamber Gurudas Porob, Satya Kishore Manepalli
  • Patent number: 8703014
    Abstract: Exemplary embodiments of the present invention disclose inorganic luminescent substances with Eu2+-doped silicate luminophores, in which solid solutions in the form of mixed phases between alkaline earth metal oxyorthosilicates and rare earth metal oxyorthosilicates are used as base lattices for the Eu2+ activation leading to the luminescence. These luminophores are described by the general formula (1-x) MII3SiO5.xSE2SiO5:Eu, in which MII preferably represents strontium ion or another alkaline earth metal ion, or another divalent metal ion selected from the group consisting of the magnesium, calcium, barium, copper, zinc, and manganese. These ions may be used in addition to strontium and also as mixtures with one another.
    Type: Grant
    Filed: May 4, 2010
    Date of Patent: April 22, 2014
    Assignees: Seoul Semiconductor Co., Ltd., LITEC-LP GmbH
    Inventors: Chung Hoon Lee, Walter Tews, Gundula Roth, Detlef Starick
  • Patent number: 8696934
    Abstract: The present invention relates to oxide luminescent materials activated by trivalent thulium and their preparations. The luminescent materials are the compounds with the following general formula: (RE1-xTmx)2O3, wherein a range of x is 0<x?0.05 and RE is one or two selected from Y, Gd, La, Lu and Sc. These materials are prepared by Sol-Gel method or high temperature solid phase method using metal oxide of Tm3+, chloride of Tm3+, nitrate of Tm3+, carbonate of Tm3+ or oxalate of Tm3+, and one or two of oxide Y3+, Gd3+, La3+, Lu3+ or Sc3+, chloride Y3+, Gd3+, La3+, Lu3+ or Sc3+, nitrate Y3+, Gd3+, La3+, Lu3+ or Sc3+, carbonate Y3+, Gd3+, La3+, Lu3+ or Sc3+ and oxalate of Y3+, Gd3+, La3+, Lu3+ or Sc3+ as raw material. The present oxide luminescent materials activated by trivalent thulium have high stability, color purity and luminous efficiency, and the methods can easily be operated.
    Type: Grant
    Filed: March 6, 2009
    Date of Patent: April 15, 2014
    Assignee: Ocean's King Lighting Science & Technology Co., Ltd.
    Inventors: Mingjie Zhou, Wenbo Ma, Zhaopu Shi
  • Patent number: 8685279
    Abstract: Phosphor that can provide white LED that uses a blue LED or an ultraviolet LED as a light source and that has superior luminous efficiency. This phosphor includes, as a main component, ?-type sialon represented by a general expression: (M1)x(M2)y(Si,Al)12(O,N)16 (where M1 is one or more types of elements selected from a group consisting of Li, Mg, Ca, Y, and lanthanide element (except for La and Ce) and M2 is one or more types of elements selected from a group consisting of Ce, Pr, Eu, Tb, Yb, and Er, and 0.3?X+Y?1.5 and 0<y?0.7 are established and the sialon phosphor consists of a powder having a specific surface area of 0.2 to 0.5 m2/g.
    Type: Grant
    Filed: March 8, 2013
    Date of Patent: April 1, 2014
    Assignee: Denki Kagaku Kogyo Kabushiki Kaisha
    Inventors: Hideyuki Emoto, Masahiro Ibukiyama, Takashi Kawasaki
  • Patent number: 8685276
    Abstract: Aqueous thermal inkjet ink composition for the printing of security documents comprising at least one luminescent water-soluble lanthanide complex.
    Type: Grant
    Filed: May 11, 2010
    Date of Patent: April 1, 2014
    Assignee: Sicpa Holding SA
    Inventors: Vickie Aboutanos, Thomas Tiller, Christine Reinhard, Stéphanie Rascagnères
  • Patent number: 8685278
    Abstract: It is provided a fluorescent zirconia material including a fluorescent component and emitting fluorescence when excited with a light of a predetermined wavelength, the fluorescent component including a fluorescent material, the fluorescent material including at least one kind of Y2SiO5:Ce, Y2SiO5:Tb, (Y, Gd, Eu)BO3, Y2O3:Eu, YAG:Ce, ZnGa2O4:Zn and BaMgAl10O17:Eu and the fluorescent material being capable of emiting the fluorescence when subjected to firing treatment at temperatures ranging from 1300 to 1600(° C.) under oxidizing environments.
    Type: Grant
    Filed: March 17, 2010
    Date of Patent: April 1, 2014
    Assignee: Noritake Co., Limited
    Inventors: Yoshihisa Yamada, Yoshihisa Ito
  • Patent number: 8679362
    Abstract: Disclosed herein are a nickel-zinc-copper (NiZnCu) based ferrite composition containing 0.001 to 0.3 parts by weight of bivalent metal, 0.001 to 0.3 parts by weight of trivalent metal, and 0.001 to 0.5 parts by weight of tetravalent metal based on 100 parts by weight of main component containing 47.0 to 50.0 mol % of Fe2O3, 15.0 to 27.0 mol % of NiO, 18.0 to 25.0 mol % of ZnO, and 7.0 to 13.0 mol % of CuO, and a multilayered chip device and a toroidal core using the same. According to exemplary embodiments of the present invention, a bivalent metal, a trivalent metal, and a tetravalent are contained in a NiZuCu ferrite, thereby making it possible to provide a ferrite composition having excellent quality factor (Q) characteristics. Moreover, it is possible to provide a toroidal core and a multilayered chip device having excellent sinterability, permittivity, and quality factor (Q) characteristics using the ferrite composition.
    Type: Grant
    Filed: September 6, 2012
    Date of Patent: March 25, 2014
    Assignee: Samsung Electro-Mechanics Co., Ltd.
    Inventors: Myeong Gi Kim, Sung Yong An, Ic Seob Kim
  • Patent number: 8668843
    Abstract: An M-C—N—O based phosphor including a group IIIB element (M), carbon (C), nitrogen (O), wherein an amount of the group IIIB element (M) contained is 1%<(M)<50% by mass, an amount of carbon (C) contained is 0.005%<(C)<10% by mass, an amount of nitrogen (N) contained is 1%<(N)<60% by mass, an amount of oxygen (O) contained is 1%<(O)<75% by mass, and (M)+(C)+(N)+(O)=100% by mass. Colors of the M-C—N—O based phosphor can be changed by adjusting a peak top of an emission spectrum. Highly environmentally-compatible polymer dispersions, inorganic EL devices, light emitting devices, fluorescent tubes, and the like are also provided, which use the M-C—N—O based phosphors.
    Type: Grant
    Filed: February 29, 2008
    Date of Patent: March 11, 2014
    Assignees: Hiroshima University, Kuraray Co., Ltd.
    Inventors: Kikuo Okuyama, Akihiro Yabuki, Ferry Iskandar, Takashi Ogi, Jun Takai, Hideharu Iwasaki
  • Patent number: 8663499
    Abstract: A novel type of green luminophore containing mixed rare-earth phosphates is produced from precursor particles having a mean diameter ranging from 1.5 to 15 microns; such particles have an inorganic core and a shell of a mixed lanthanum and/or cerium phosphate, optionally doped with terbium, evenly covering the inorganic core with a thickness greater than or equal to 300 nm.
    Type: Grant
    Filed: July 19, 2007
    Date of Patent: March 4, 2014
    Assignee: Rhodia Operations
    Inventors: Thierry Le-Mercier, Valerie Buissette
  • Patent number: 8652358
    Abstract: The present invention provides an Al—C—O based phosphor using neither heavy metal nor rare metal and composed of elements with high environmental compatibility and excellent economic efficiency, wherein the wavelength of the peak intensity of the emission spectrum can be changed without changing the basic composition. An aluminum oxide phosphor which comprises aluminum (Al), carbon (C), and oxygen (O) respectively in an amount of 30 mol %<Al<60 mol %, 0 mol %<C<10 mol %, 30 mol %<O<70 mol % is provided. The above problem is solved in the production of an Al—C—O phosphor comprising aluminum (Al), carbon (C), and oxygen (O) by heating and firing a mixture comprising an aluminum-containing compound and a coordinatable oxygen-containing compound.
    Type: Grant
    Filed: March 31, 2010
    Date of Patent: February 18, 2014
    Assignees: Hiroshima University, Kuraray Co., Ltd.
    Inventors: Kikuo Okuyama, Ferry Iskandar, Yutaka Kaihatsu, Jun Takai, Hideharu Iwasaki
  • Patent number: 8647525
    Abstract: A ferrite composition includes a main component having 46.0 to 49.8 mol % of an iron oxide in terms of Fe2O3, 5.0 to 14.0 mol % of a copper oxide in terms of CuO and 8.0 to 32.0 mol % of a zinc oxide in terms of ZnO, and a remainder of the main component is composed of a nickel oxide; and as subcomponents, with respect to 100 wt % of the main component, 0.5 to 6.0 wt % of a silicon oxide in terms of SiO2 and 0.01 to 2.0 wt % of a boron oxide in terms of B2O3. Further, as a subcomponent, 0.01 to 0.17 wt % of potassium oxide in terms of K2O or 0.3 to 2.0 wt % of tin oxide in terms of SnO2 may be included.
    Type: Grant
    Filed: March 15, 2011
    Date of Patent: February 11, 2014
    Assignee: TDK Corporation
    Inventors: Ryuichi Wada, Shou Kawadahara, Yukio Takahashi, Raitarou Masaoka, Takashi Suzuki, Hiroshi Momoi
  • Patent number: 8628686
    Abstract: The embodiment provides a process for production of an oxynitride fluorescent substance. In the process, a compound represented by the formula: (Sr,Eu)2Si5N8, silicon nitride and aluminum nitride are mixed and then fired in a nitrogen atmosphere under high pressure.
    Type: Grant
    Filed: February 28, 2011
    Date of Patent: January 14, 2014
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Naotoshi Matsuda, Yumi Fukuda, Masahiro Kato