Patents Examined by Eric Wong
  • Patent number: 11586000
    Abstract: A fiber optic assembly is provided including a support substrate having a substantially flat surface and a signal-fiber array supported on the support substrate. The signal-fiber array includes a plurality of optical fibers. At least some of the optical fiber of the plurality of optical fibers includes a first datum contact disposed between the optical fiber and an adjacent optical fiber and each of the optical fibers of the plurality of optical fibers includes a second datum contact disposed between each of the optical fibers of the plurality of optical fibers and the support substrate. A first datum surface is disposed at a top surface of each of the plurality of optical fibers opposite the support surface.
    Type: Grant
    Filed: April 16, 2021
    Date of Patent: February 21, 2023
    Assignee: Corning Research & Development Corporation
    Inventors: Douglas Llewellyn Butler, Alexander Lee Cuno, Alan Frank Evans, Hailey Perraut, James Scott Sutherland
  • Patent number: 11585986
    Abstract: Optical connectors that substantially preserve alignment and are easy to manufacture. The alignment system using the optical connectors disclosed herein include a first housing, a second housing and an alignment component, the said alignment component configured to provide optical alignment between the optical components.
    Type: Grant
    Filed: January 14, 2020
    Date of Patent: February 21, 2023
    Assignee: Wavefront Research, Inc.
    Inventors: Jonas D. Corl, David M. Vincentsen, Thomas A. Mitchell, Michelle M. Stone, Thomas W. Stone, James W. Guelzow
  • Patent number: 11573383
    Abstract: An OSFP optical transceiver having split multiple fiber optical port using reduced amount of MPO terminations is provided that includes two adjacent sockets integrated into the optical port of the OSFP optical transceiver. The two adjacent sockets are vertically oriented with respect to the mounting baseplate of the OSFP optical transceiver, and each of the two adjacent sockets is adapted to receive an MPO receptacle that terminates the proximal end of a bundle of fibers. The OSFP optical transceiver also includes an optical connection between each socket and a corresponding lens in the OSFP optical transceiver, for transmitting optical signals received from other transceivers into the OSFP optical transceiver and optical signals generated in the OSFP optical transceiver to other transceivers.
    Type: Grant
    Filed: January 23, 2020
    Date of Patent: February 7, 2023
    Assignee: Mellanox Technologies, Ltd.
    Inventors: Andrey Ger, Rony Setter, Yaniv Kazav
  • Patent number: 11550098
    Abstract: A low-dispersion single-mode fiber includes a core and claddings covering the core. The core layer has a radius in a range of 3-5 ?m and a relative refractive index difference in a range of 0.15% to 0.45%. The claddings comprise a first depressed cladding, a raised cladding, a second depressed cladding, and an outer cladding arranged sequentially from inside to outside. The first depressed cladding has a unilateral width in a range of 2-7 ?m and a relative refractive index difference in a range of ?0.4% to 0.03%. The raised cladding has a unilateral width in a range of 2-7 ?m and a relative refractive index difference in a range of 0.05% to 0.20%. The second depressed cladding has a unilateral width in a range of 0-8 ?m and a relative refractive index difference in a range of 0% to ?0.2%. The outer cladding is formed of pure silicon dioxide glass.
    Type: Grant
    Filed: October 20, 2020
    Date of Patent: January 10, 2023
    Assignee: YANGTZE OPTICAL FIBRE AND CABLE JOINT STOCK LIMITED COMPANY
    Inventors: Changkun Yan, Wufeng Xiao, Runhan Wang, Tiejun Wang, Beibei Cao, Ming Cheng
  • Patent number: 11550097
    Abstract: An array-type polarization-maintaining multi-core fiber includes a main outer cladding, fiber core units, and stress units. The fiber core units and the stress units are arranged to form a unit array including one central unit and any unit in the unit array being equidistantly arranged from adjacent units thereof. Provided is at least one pair of stress units, each pair of stress units being arranged symmetrical about one fiber core unit to form a polarization-maintaining fiber core unit. The fiber core units each include a fiber core and an inner cladding surrounding a core layer. A portion outside the fiber core units and the stress units is the main outer cladding. The fiber can greatly enhance spectral efficiency of an optical transmission system, and improve fiber communication capacity.
    Type: Grant
    Filed: June 18, 2020
    Date of Patent: January 10, 2023
    Assignee: YANGTZE OPTICAL FIBRE AND CABLE JOINT STOCK LIMITED COMPANY
    Inventors: Xinben Zhang, Ming Tang, Chen Yang, Yue Meng, Kun Yang, Shen Peng, Chi Zhang, Beibei Cao, Weijun Tong
  • Patent number: 11531175
    Abstract: An improved deepwater optical fiber cable with abrasion protection and techniques for manufacturing the same are provided. For example, the abrasion protected deepwater cable may be a modification or enhancement of an existing special application (SPA) optical fiber cable. One or more additional layers of metallic tape and jackets may be added to the outermost layer of the SPA cable. The tape and jacket layers may have different thicknesses and may be made from different materials to optimize protection against man-made objects or otherwise naturally occurring materials in deep water environments, such as fish aggregation devices (FADs).
    Type: Grant
    Filed: May 29, 2020
    Date of Patent: December 20, 2022
    Assignee: SUBCOM, LLC
    Inventors: Jeremiah A. Mendez, Marsha Spalding, Ralph Rue, Geraldine Paraiso, Georg Heinrich Mohs, Seymour Shapiro
  • Patent number: 11520115
    Abstract: In a first embodiment, cable sealing device is described herein for use in a port structure of fiber terminal, telecommunication enclosure, or a bulkhead. The exemplary cable sealing device comprises a unibody construction comprising a rigid body portion, the rigid portion having a generally tubular shape that includes an interior passageway extend from a first end to a second end of the rigid body portion; and an elastomeric body portion over molded onto and extending from an end of the rigid body portion, the elastomeric body portion comprises a front end having an interior sleeve that extends into interior passageway at the second end of rigid body portion and an exterior sealing sleeve that is formed over the second end of rigid body portion, and a closed end disposed opposite the open end, wherein the closed end includes a removable portion.
    Type: Grant
    Filed: November 30, 2020
    Date of Patent: December 6, 2022
    Assignee: Corning Research & Development Corporation
    Inventors: Donald Kent Larson, Michel Teva Menguy
  • Patent number: 11500169
    Abstract: The present invention provides a receptacle structure for an optical connector comprising a receptacle body, and a first housing. The receptacle body has a first end and a second end for providing optical connector inserted thereto, respectively. Two sides of the first end respectively have first flexible plate having first attaching structure. The first housing, folded by a single piece material, is a closed structure having a first through hole wherein two walls of the first housing have first coupling structure for coupling to the attaching structure when the first end of the receptacle body is inserted into the first through hole whereby the first housing is completely assembled with the receptacle body. In addition, an optical communication device having the receptacle structure is also provided in which the optical connector can be inserted into the receptacle structure for optical communication.
    Type: Grant
    Filed: April 18, 2020
    Date of Patent: November 15, 2022
    Assignee: ACSUPER TECHNOLOGIES INC.
    Inventor: Mei-Miao Liu
  • Patent number: 11480727
    Abstract: An MCF according to one embodiment simultaneously achieves excellent economic rationality and high compatibility in short-distance optical transmission. The MCF includes a plurality of core portions, a common cladding, and a resin coating. Each of the core portions includes a core, an inner cladding, and a trench layer. At least four core portions arranged on a straight line have substantially the same relative refractive index difference between the core and the inner cladding. The refractive index profile of a first core portion and a second core portion adjacent to each other among the four core portions has a shape in which the refractive index of the inner cladding is offset with respect to the refractive index of the common cladding so that the magnitude relationship of the refractive index between the inner cladding and the common cladding is reversed.
    Type: Grant
    Filed: June 29, 2020
    Date of Patent: October 25, 2022
    Assignee: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventor: Tetsuya Hayashi
  • Patent number: 11480745
    Abstract: At least a portion of an integrated circuit wafer includes at least one layer in which two or more waveguides are formed. A cavity is formed in the integrated circuit wafer. At least one die, comprising a photonic integrated circuit, has: at least one edge on which there are two or more optical mode defining structures in proximity to respective optical mode defining structures on at least one surface of the cavity, a bottom surface secured to a bottom surface of the cavity, and a top surface on which there is at least one metal contact.
    Type: Grant
    Filed: December 15, 2020
    Date of Patent: October 25, 2022
    Assignee: Ciena Corporation
    Inventors: Charles Baudot, Simon Savard, François Pelletier, Claude Gamache
  • Patent number: 11474317
    Abstract: A photonic system includes a first photonic circuit having a first face and a second photonic circuit having a second face. The first photonic circuit comprises first wave guides, and, for each first wave guide, a second wave guide covering the first wave guide, the second wave guides being in contact with the first face and placed between the first face and the second face, the first wave guides being located on the side of the first face opposite the second wave guides. The second photonic circuit comprises, for each second wave guide, a third wave guide covering the second wave guide. The first photonic circuit comprises first positioning devices projecting from the first face and the second photonic circuit comprises second positioning devices projecting from the second face, at least one of the first positioning devices abutting one of the second positioning devices in a first direction.
    Type: Grant
    Filed: January 21, 2020
    Date of Patent: October 18, 2022
    Assignee: STMICROELECTRONICS (CROLLES 2) SAS
    Inventors: Jean-Francois Carpentier, Charles Baudot
  • Patent number: 11474303
    Abstract: An object is to provide an optical fiber connector ferrule, a sleeve, and a method for manufacturing a ferrule member that can avoid an increase in manufacturing time and an increase in cost of optical connectors for connecting multicore optical fibers. The present invention provides an optical fiber connector ferrule, a sleeve, and a method for manufacturing ferrule member which realizes alignment of multicore optical fibers corresponding to the connection by mounting a ferrule on a multicore fiber and then cutting a ferrule member instead of aligning core positions by rotating an axis of an optical fiber and adjusting positions of cores to the ferrule, leading to simplification of a rotational alignment step.
    Type: Grant
    Filed: September 11, 2019
    Date of Patent: October 18, 2022
    Assignee: Nippon Telegraph and Telephone Corporation
    Inventors: Masaaki Takaya, Yoshiteru Abe, Ryo Koyama, Chisato Fukai, Kazunori Katayama, Kazuhide Nakajima, Yusuke Yamada
  • Patent number: 11467341
    Abstract: Structures with waveguide cores in multiple levels and methods of fabricating a structure that includes waveguide cores in multiple levels. The structure includes a first waveguide core and a second waveguide core positioned in a different level than the first waveguide core. The first waveguide core includes a longitudinal axis and a plurality of segments having a spaced arrangement along the longitudinal axis. The second waveguide core is aligned to extend across the plurality of segments of the first waveguide core.
    Type: Grant
    Filed: November 10, 2020
    Date of Patent: October 11, 2022
    Assignee: GlobalFoundries U.S. Inc.
    Inventor: Yusheng Bian
  • Patent number: 11460646
    Abstract: Fiber optic connectors and connectorized fiber optic cables include connector housings having locking portions defined on the connector housing that allow the connector housing to be selectively coupled to a corresponding push-button securing member of a multiport assembly. Methods for selectively connecting a fiber optic connector to and disconnecting the fiber optic connector from the multiport assemblies allow for connector housings to be forcibly and nondestructively removed from the multiport assembly.
    Type: Grant
    Filed: October 12, 2020
    Date of Patent: October 4, 2022
    Assignee: Corning Research & Development Corporation
    Inventors: Thierry Luc Alain Dannoux, Joel Christopher Rosson, Felice Scotta, Michael Wimmer, Zhiye Zhang
  • Patent number: 11448840
    Abstract: A unitube breakout kit includes a bottom portion extending from a neck end to an outlet end. A top portion is selectively attached to the bottom portion. The bottom portion and the top portion together define a central cavity configured to contain at least one of fiber optic fibers or ribbon fibers. The bottom portion defines a first pair of slots configured to cooperate with a fastener to attach at least one of fiber optic core tube or unitube ribbon cable to the bottom portion.
    Type: Grant
    Filed: July 10, 2020
    Date of Patent: September 20, 2022
    Assignee: PREFORMED LINE PRODUCTS CO.
    Inventors: Matthew Patrick Becker, Brendan O'Boyle
  • Patent number: 11422307
    Abstract: A cladding mode stripper, includes: a resin part that covers a coating-removed section of an optical fiber and has a refractive index not less than that of an outermost shell of the optical fiber in the coating-removed section. A surface of the resin part includes an incident angle reducing structure. The surface is opposite to an interface between the resin part and the outermost shell. The incident angle reducing structure reduces a first incident angle or a first average incident angle at which cladding mode light that has entered the resin part from the optical fiber enters the surface.
    Type: Grant
    Filed: April 27, 2018
    Date of Patent: August 23, 2022
    Assignee: Fujikura Ltd.
    Inventor: Ryokichi Matsumoto
  • Patent number: 11422305
    Abstract: Structures for polarization filtering and methods of forming a structure for polarization filtering. A waveguiding structure has a first waveguide core region including a first plurality of bends, a second waveguide core region including a second plurality of bends laterally spaced from the first plurality of bends by a gap, and a third waveguide core region including a third plurality of bends positioned beneath the gap. The first waveguide core region and the second waveguide core region contain a first material. The third waveguide core region contains a second material that differs in composition from the first material.
    Type: Grant
    Filed: December 2, 2020
    Date of Patent: August 23, 2022
    Assignee: GlobalFoundries U.S. Inc.
    Inventors: Yangyang Liu, Tymon Barwicz
  • Patent number: 11415759
    Abstract: Multiports comprising a connection port insert having at least one optical port along with methods for making are disclosed. One embodiment is directed to a multiport for providing an optical connection comprising a shell and a connection port insert. The shell comprises a first end having a first opening leading to a cavity. The connection port insert comprises a body having a front face and at least one connection port comprising an optical connector opening extending from the front face into the connection port insert with a connection port passageway extending through part of the connection port insert to a rear portion, where the connection port insert is sized so that at least a portion of the connection port insert fits into the first opening and the cavity of the shell.
    Type: Grant
    Filed: December 13, 2019
    Date of Patent: August 16, 2022
    Assignee: Corning Optical Communications LLC
    Inventors: Thierry Luc Alain Dannoux, Felice Scotta
  • Patent number: 11409068
    Abstract: A method of preparing a preformed fiber optic circuit for later termination to at least one fiber optic connector includes providing a substrate for supporting a plurality of optical fibers, the substrate including at least one layer of flexible foil, wherein the flexible foil may be formed from polyethylene terephthalate (PET) according to one example and peeling a layer including at least the optical fibers from the at least one layer of flexible foil.
    Type: Grant
    Filed: October 2, 2018
    Date of Patent: August 9, 2022
    Assignee: CommScope Technologies LLC
    Inventors: Thomas Marcouiller, Paula Lockhart, Wouter Vranken, Koen Vuerinckx, Laurens Izaäk Van Wuijckhuijse
  • Patent number: 11409055
    Abstract: Multiports having connection ports with associated securing features and methods for making the same are disclosed. In one embodiment comprises a multiport for providing an optical connection comprising a shell, a connection port insert, and at least one securing feature. The shell comprises a first end having a first opening leading to a cavity. The connection port insert comprises a body having a front face and at least one connection port comprising an optical connector opening extending from the front face into the connection port insert with a connection port passageway extending through part of the connection port insert to a rear portion, where the connection port insert is sized so that at least a portion of the connection port insert fits into the first opening and the cavity of the shell. The at least one securing feature is associated with the at least one connection port.
    Type: Grant
    Filed: December 17, 2019
    Date of Patent: August 9, 2022
    Assignee: Corning Optical Communications LLC
    Inventors: Thierry Luc Alain Dannoux, Felice Scotta