Patents Examined by Erin D. Chiem
  • Patent number: 11835757
    Abstract: An optoelectronic package is provided. The optoelectronic package includes a photonic component. The photonic component has a bottom surface and a lateral surface. The lateral surface of the photonic component includes a light coupling region and a non-light coupling plane. The non-light coupling plane contacts the bottom surface. The light coupling region and the non-light coupling plane are not aligned.
    Type: Grant
    Filed: October 1, 2021
    Date of Patent: December 5, 2023
    Assignee: ADVANCED SEMICONDUCTOR ENGINEERING, INC.
    Inventors: Mei-Ju Lu, Jr-Wei Lin, Chang-Feng You
  • Patent number: 11829010
    Abstract: An optical waveguide, including a first structural layer, a second structural layer, a first light-guiding element, and multiple second light-guiding elements, is provided. The light-guiding elements are a partially penetrating and partially reflective layer. Multiple first sub-beams in an image beam are transmitted in the first or the second structural layer by a coupling inclined surface. Each first sub-beam forms multiple second sub-beams after being transmitted by the first or the second light-guiding elements. Some of the second sub-beams are coupled out of the optical waveguide by the second light-guiding elements, thereby enabling the image beam to expand in a first direction. For a portion of the visible light waveband, a trend of transmittance of the partially penetrating and partially reflective layer changing as a wavelength increases is opposite to a trend of transmittance of the first structural layer or the second structural layer changing as the wavelength increases.
    Type: Grant
    Filed: April 27, 2022
    Date of Patent: November 28, 2023
    Assignee: Coretronic Corporation
    Inventor: Hung-Ta Chien
  • Patent number: 11815697
    Abstract: A laser system may include a laser resonator configured to emit an input laser beam having an elliptical cross-sectional shape. The laser system also may include first reflective device configured to reflect the input laser beam to produce a first reflected laser beam. The first reflective device may include a spherical surface for reflecting the input laser beam. The laser system also may include a second reflective device configured to reflect the first reflected laser beam to produce a second reflected laser beam. The laser system also may include a coupling device configured to focus the second reflected laser beam to produce an output laser beam. The coupling device may include a spherical surface for receiving the second reflected laser beam. The laser system also may include an optic fiber configured to transmit the output laser beam for emission of the output laser beam onto a target area.
    Type: Grant
    Filed: August 26, 2021
    Date of Patent: November 14, 2023
    Assignee: Boston Scientific Scimed, Inc.
    Inventor: Honggang Yu
  • Patent number: 11803070
    Abstract: A electronic method, includes receiving, by a graphene structure, a SPP mode of a particular frequency. The electronic method includes receiving, by the graphene structure, a driving microwave voltage. The electronic method includes generating, by the graphene structure, an entanglement between optical and voltage fields.
    Type: Grant
    Filed: November 28, 2022
    Date of Patent: October 31, 2023
    Assignee: ABU DHABI UNIVERSITY
    Inventors: Montasir Yousof Abdallah Qasymeh, Hichem El Euch
  • Patent number: 11768337
    Abstract: Structures for a coupler and methods of forming a structure for a coupler. A structure for a directional coupler may include a first waveguide core having one or more first airgaps and a second waveguide core including one or more second airgaps. The one or more second airgaps are positioned in the second waveguide core adjacent to the one or more first airgaps in the first waveguide core. A structure for an edge coupler is also provided in which the waveguide core of the edge coupler includes one or more airgaps.
    Type: Grant
    Filed: June 29, 2021
    Date of Patent: September 26, 2023
    Assignee: GlobalFoundries U.S. Inc.
    Inventors: Spencer Porter, Mark Levy, Siva P. Adusumilli, Yusheng Bian
  • Patent number: 11762062
    Abstract: A LiDAR system emits single mode light from a photonic integrated circuit (PIC) and is capable of receiving a different mode light, or multiple modes of light, into the PIC. Objects in the LiDAR's field of view may reflect light with a mode different from the mode of the light that illuminated the objects. Thus, in some embodiments, a single-mode optical waveguide, a single-mode-multi-mode optical junction, a multi-mode optical waveguide and an array of optical emitters on the PIC are configured to emit into free space light of a single mode from each optical emitter of the array of optical emitters. The multi-mode optical waveguide and the array of optical emitters are configured to receive from the free space light of a mode different from the single mode, or multiple modes, and to couple the light of the different mode or multiple modes into the multi-mode optical waveguide.
    Type: Grant
    Filed: May 5, 2021
    Date of Patent: September 19, 2023
    Assignee: The Charles Stark Draper Laboratory, Inc.
    Inventors: Steven J. Byrnes, Michael G. Moebius, Steven J. Spector
  • Patent number: 11740415
    Abstract: Disclosed are apparatus and methods for a silicon photonic (SiPh) structure comprising the integration of an electrical integrated circuit (EIC); a photonic integrated circuit (PIC) disposed on top of the EIC; two or more polymer waveguides (PWGs) disposed on top of the PIC and formed by layers of cladding polymer and core polymer; and an integration fan-out redistribution (InFO RDL) layer disposed on top of the two or more PWGs. The operation of PWGs is based on the refractive indexes of the cladding and core polymers. Inter-layer optical signals coupling is provided by edge-coupling, reflective prisms and grating coupling. A wafer-level system implements a SiPh structure die and provides inter-die signal optical interconnections among the PWGs.
    Type: Grant
    Filed: May 14, 2021
    Date of Patent: August 29, 2023
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Yu-Hao Chen, Hui-Yu Lee, Chung-Ming Weng, Jui-Feng Kuan, Chien-Te Wu
  • Patent number: 11733472
    Abstract: A fiber optic telecommunications device includes a fiber optic cassette comprising a body defining a front and an opposite rear and an enclosed interior. A fiber optic signal entry location is defined on the body for a fiber optic signal to enter the interior via a fiber optic cable. An adapter block defines a plurality of fiber optic adapters and is removably mounted to the body with a snap-fit interlock, each adapter including a front outer end, a rear inner end, and internal structures allowing mating of optical connectors mounted to the front and rear ends, respectively. A removable spacer is mounted to the body, the spacer configured to expand the size of the enclosed interior of the cassette and a removable cover is mounted to the spacer. Connectorized optical fibers extend from the fiber optic signal entry location to the rear inner ends of at least some of the fiber optic adapters for relaying the fiber optic signal to fiber optic connectors to be coupled to the front outer ends of the adapters.
    Type: Grant
    Filed: January 20, 2022
    Date of Patent: August 22, 2023
    Assignee: CommScope Technologies LLC
    Inventors: Soutsada Vongseng, Kristofer Bolster, Timothy Badar
  • Patent number: 11726280
    Abstract: An opto-mechanical assembly includes a first thermal control element disposed on a region of a first section of an enclosure; a second thermal control element disposed on a region of a second section of the enclosure; and an optical element that includes a first portion and a second portion. The first thermal control element is configured to heat the first portion of the optical element and to cause the first portion of the optical element to be associated with a first temperature, and the second thermal control element is configured to heat the second portion of the optical element and to cause the second portion of the optical element to be associated with a second temperature. This causes a difference between the first temperature and the second temperature to satisfy a temperature difference threshold. Accordingly, this also causes a temperature gradient along an axis of the optical element to satisfy a temperature gradient threshold.
    Type: Grant
    Filed: June 24, 2021
    Date of Patent: August 15, 2023
    Assignee: Lumentum Operations LLC
    Inventors: Roozbeh Ahmadi, Nenad Duricic, Shane H. Woodside, Doug Cross, Andrew Telford
  • Patent number: 11719881
    Abstract: A Photonic Crystal Fiber (PCF) a method of its production and a supercontinuum light source comprising such PCF. The PCF has a longitudinal axis and includes a core extending along the length of said longitudinal axis and a cladding region surrounding the core. At least the cladding region includes a plurality of microstructures in the form of inclusions extending along the longitudinal axis of the PCF in at least a microstructured length section. In at least a degradation resistant length section of the microstructured length section the PCF includes hydrogen and/or deuterium. In at least the degradation resistant length section the PCF further includes a main coating surrounding the cladding region, which main coating is hermetic for the hydrogen and/or deuterium at a temperature below Th, wherein Th is at least about 50° C., preferably 50° C.<Th<250° C.
    Type: Grant
    Filed: July 1, 2022
    Date of Patent: August 8, 2023
    Assignee: NKT PHOTONICS A/S
    Inventors: Thomas Tanggaard Alkeskjold, Casper Laur Byg, Christian Jakobsen, Jens Kristian Lyngsøe, Kim G. Jespersen, Jeppe Johansen, Martin Dybendal Maack, Martin Erland Vestergaard Pedersen, Carsten L. Thomsen
  • Patent number: 11719894
    Abstract: A ferrule-based fiber optic connectors having a ferrule retraction balancing characteristic for preserving optical performance are disclosed. The fiber optic connector comprises a connector assembly, a connector sleeve assembly and a balancing resilient member. The connector assembly comprises a ferrule and a resilient member for biasing the ferrule forward and the connector sleeve assembly comprises a housing and a ferrule sleeve, where the connector assembly is at least partially disposed in the passageway of the housing and the ferrule of the connector assembly is at least partially disposed in the ferrule sleeve. The balancing resilient member biases the housing to a forward position with the biasing resilient member having a predetermined resilient force that is greater than the friction force required for displacement of the ferrule within the ferrule sleeve.
    Type: Grant
    Filed: April 22, 2021
    Date of Patent: August 8, 2023
    Assignee: CORNING OPTICAL COMMUNICATIONS LLC
    Inventors: Micah Colen Isenhour, Thomas Theuerkorn
  • Patent number: 11714243
    Abstract: A device is provided. The device may be an optical device, a light coupling device, or a device containing an optical structure. The device includes a waveguide, a cladding, and a light coupling material. The light coupling material is disposed adjacent to the waveguide and has a first surface and a second surface, where the second surface is disposed further away from the waveguide than the first surface and a thickness of the second surface is greater than that of the first surface.
    Type: Grant
    Filed: December 18, 2020
    Date of Patent: August 1, 2023
    Assignee: ADVANCED SEMICONDUCTOR ENGINEERING, INC.
    Inventors: Jr-Wei Lin, Sin-Yuan Mu, Mei-Ju Lu
  • Patent number: 11709321
    Abstract: An optical cable includes a single optical connector configured for insertion into an optical receptacle so as to receive optical signals at a plurality of different wavelengths from the optical receptacle, and multiple electrical connectors, configured for insertion into respective electrical receptacles. Each electrical connector includes a transceiver configured to convert the optical signals into electrical output signals for output to an electrical receptacle. The optical cable further includes a plurality of optical fibers, having respective first ends connected together to the single optical connector so as to receive the optical signals. Each of the optical fibers has a respective second end coupled to a respective one of the electrical connectors. Wavelength selection optics are associated with the optical fibers so that the transceiver in each of the electrical connectors receives the optical signals at a different, respective one of the wavelengths.
    Type: Grant
    Filed: October 17, 2021
    Date of Patent: July 25, 2023
    Assignee: MELLANOX TECHNOLOGIES, LTD.
    Inventors: Henning Lysdal, Barak Gafni
  • Patent number: 11709322
    Abstract: A portable device for attaching a connector to an optical fiber, the optical fiber having an end, the device comprising means for receiving the optical fiber at the end of the optical fiber; and a connector station for autonomously attaching the connector to the optical fiber.
    Type: Grant
    Filed: September 28, 2020
    Date of Patent: July 25, 2023
    Assignees: CommScope Connectivity Belgium BVBA, CommScope Technologies LLC
    Inventors: Danny Willy August Verheyden, David Donald Erdman, Michael Gurreri, Randall Bobby Paul, Jan Watté, Robert Charles Flaig, Alan Edward Plotts, Michael Aaron Kadar-Kallen, Shelly Ann Buchter, Jan Vandenbroeck, Patrick Billet, Stefano Beri, André Johannes Maria Hilderink, Hernes Jacobs, Petrus Theodorus Rutgers, Petrus Theodorus Krechting, Martijn Johannes Wolbers, Walter Mattheus, Cristian-Radu Radulescu, Paul Vits, Karel Johannes Van Assenbergh, Pieter Cornelis Johan De Jager, Henk Jan Theodoor Van Der Pol
  • Patent number: 11709324
    Abstract: An optical connection includes a plurality of ferrules, an optical contact to allow transfer of light, a mechanical contact to allow torque transfer from the optical connection, and a rotational self-alignment structure to allow optical fibers of different optical connectors to self-rotate into rotational self-alignment upon action of connecting, wherein the ferrules are aligned and engage the torque transfer. The rotational self-alignment structure can be a tooth configuration, a helical thread configuration, a ferrule guide configuration, a spring sleeve configuration, derivatives thereof and combinations therefrom.
    Type: Grant
    Filed: July 2, 2021
    Date of Patent: July 25, 2023
    Assignee: Canon U.S.A., Inc.
    Inventors: Anderson Thi Mach, Alexander Altshuler, Xuri Yan
  • Patent number: 11693193
    Abstract: An optical ferrule comprises first and second compound stop features respectively disposed at opposing sides of the optical ferrule. Each compound stop feature has upper and lower contact surfaces. The lower contact surface is offset below the mating surface of the optical ferrule along a thickness axis perpendicular to the mating surface. The upper contact surface is offset above the mating surface along the thickness axis. The lower contact surface is offset forward from the upper stop surface along a mating direction of the optical ferrule. A connecting surface connects the upper contact surface and the lower contact surface.
    Type: Grant
    Filed: June 25, 2019
    Date of Patent: July 4, 2023
    Assignee: 3M INNOVATIVE PROPERTIES COMPANY
    Inventors: Michael A. Haase, Bing Hao
  • Patent number: 11681101
    Abstract: A splice module includes a main splicing channel and a rework channel. The main splicing channel has an encapsulated section at which one or more initial splices can be stored. The main splicing channel also includes a non-encapsulated section through which trunk cable fibers of the initial splices extend. If re-splicing is needed, the trunk cable fibers can be accessed at the non-encapsulated section, cut, and re-spliced to a new connectorized pigtail or other optical fibers.
    Type: Grant
    Filed: October 14, 2020
    Date of Patent: June 20, 2023
    Assignee: Commscope Technologies, LLC
    Inventors: David R. Wurst, Jacob C. Anderson, Paul M. Lawson
  • Patent number: 11675127
    Abstract: Embodiments herein describe optical interposers that utilize waveguides to detect light. For example, in one embodiment, an apparatus is provided that includes an optical detector having a first layer. The first layer includes at least one of polysilicon or amorphous silicon. The first layer forms a diode that includes a p-doped region and an n-doped region. The apparatus further includes a waveguide optically coupled to the diode and disposed on a different layer than the first layer.
    Type: Grant
    Filed: July 16, 2021
    Date of Patent: June 13, 2023
    Assignee: Cisco Technology, Inc.
    Inventors: Sean P. Anderson, Vipulkumar Patel
  • Patent number: 11662527
    Abstract: An optical assembly includes a light source for providing a beam of light, a lens system configured to expand and collimate the beam of light, and a configurable beam injector, wherein the beam injector contains a first grid plate and a second grid plate to block individual beams of light. The first grid plate and the second grid plate may be configured such that each grid plate respectively corresponds to particular MEMS mirrors. The grid plates can be configured to have pathways that allow for beams of light to be passed through and other pathways which are blocked to prevent the passage of light. The first grid plate and second grid plate may thus block or allow for transmission of beams of lights to those particular MEMS mirrors. The second grid plate can be configured to be easily swappable during or removable to allow for a different set of beams of light, corresponding to a different set of MEMS mirrors, to be blocked.
    Type: Grant
    Filed: March 2, 2021
    Date of Patent: May 30, 2023
    Assignee: Google LLC
    Inventors: Kevin Yasumura, Jill Berger
  • Patent number: 11662590
    Abstract: An eye tracker having a first waveguide for propagating illumination light along a first waveguide path and propagating image light reflected from at least one surface of an eye along a second waveguide path. At least one grating lamina for deflecting the illumination light out of the first waveguide path towards the eye and deflecting the image light into the second waveguide path towards a detector is disposed adjacent an optical surface of the waveguide.
    Type: Grant
    Filed: January 3, 2022
    Date of Patent: May 30, 2023
    Assignee: DigiLens Inc.
    Inventors: Milan Momcilo Popovich, Jonathan David Waldern, Alastair John Grant