Patents Examined by Erin Piateski
  • Patent number: 8855768
    Abstract: An RF filter for an active medical device (AMD), for handling RF power induced in an associated lead from an external RF field at a selected MRI frequency or range frequencies includes a capacitor having a capacitance of between 100 and 10,000 picofarads, and a temperature stable dielectric having a dielectric constant of 200 or less and a temperature coefficient of capacitance (TCC) within the range of plus 400 to minus 7112 parts per million per degree centigrade. The capacitor's dielectric loss tangent in ohms is less than five percent of the capacitor's equivalent series resistance (ESR) at the selected MRI RF frequency or range of frequencies.
    Type: Grant
    Filed: November 25, 2013
    Date of Patent: October 7, 2014
    Assignee: Greatbatch Ltd.
    Inventors: Robert Shawn Johnson, Dominick J. Frustaci, Warren S. Dabney, Robert A. Stevenson, Keith W. Seitz, Christine A. Frysz, Thomas Marzano, Richard L. Brendel, John E. Roberts, William Thiebolt, Christopher M. Williams, Jason Woods, Buehl E. Truex
  • Patent number: 8818515
    Abstract: Methods and systems for delivering voltage limited neurostimulation to a patient. In one aspect, a method includes initiating a flow of electrical current through a first electrode and a second electrode coupled to the patient and increasing the flow of electrical current toward a target value by increasing a voltage across the first electrode and second electrode. Prior to reaching the target value of electrical current, the method includes preventing the voltage across the first electrode and second electrode from increasing beyond a first predetermined limit; and subsequently, maintaining the voltage across the first electrode and second electrode at or within a predetermined range that does not exceed the first predetermined limit. The amplitude of the electrical current continues to increase toward the target value during at least part of a time when the voltage across the first electrode and the second electrode is maintained within the predetermined range.
    Type: Grant
    Filed: January 13, 2012
    Date of Patent: August 26, 2014
    Assignee: Research Foundation of the City University of New York
    Inventors: Marom Bikson, Christoph Hahn, Shiraz A. Macuff, Preet Minhas, Asif Rahman, Justin Keith Rice
  • Patent number: 8788033
    Abstract: An energy-releasing carbon nanotube transponder comprising a nanocapacitor connected to at least one carbon nanotube and method of using same are described. An adjustable amount of electric energy is stored within the nanocapacitor so that the energy-releasing carbon nanotube transponder delivers either a biologically destructive or a biologically non-destructive electrical charge to target cells in response to biological, chemical or electrical stimuli. An optional biocompatible coating onto the outer surface of the carbon nanotube transponder improves cellular targeting, cellular binding or body tolerance towards the carbon nanotube transponder. Optionally, a molecular label attached to at least one carbon nanotube allows for in vivo tracking of the carbon nanotube transponder.
    Type: Grant
    Filed: March 15, 2012
    Date of Patent: July 22, 2014
    Assignee: Rush University Medical Center
    Inventor: Marvin A. Rossi
  • Patent number: 8781589
    Abstract: The invention is a method of hermetically bonding a ceramic part to a metal part by welding and brazing a component assembly comprised of metal parts, a ceramic part, and a metal ferrule having alignment lips. The ceramic part is preferably a hollow tube of partially-stabilized zirconia that is brazed to an alignment ferrule that is preferably titanium or a titanium alloy, such as Ti-6Al-4V. On one end the component assembly is brazed to an end cap for closure. On the other end the alignment ferrule is preferably brazed to a ring that is preferably comprised of a noble metal, such as platinum, iridium, or alloys of platinum and iridium. The ring is laser welded to an eyelet that is preferably comprised of a noble metal.
    Type: Grant
    Filed: April 29, 2013
    Date of Patent: July 15, 2014
    Assignee: Alfred E. Mann Foundation For Scientific Research
    Inventors: Guangqiang Jiang, Attila Antalfy
  • Patent number: 8781605
    Abstract: An assembly for introducing a leadless intra-cardiac medical device includes a sheath having an internal passage, wherein the sheath is configured to be maneuvered into the heart of the patient. A housing may be retained within the internal passage, wherein the housing is configured to be pushed out of the sheath, the housing having a first anchoring member configured to anchor the housing to a first implant location within the heart. The assembly may also include an electrode trailing the housing within the internal passage, wherein the electrode is also configured to be pushed out of the sheath. The electrode has a second anchoring member configured to anchor the electrode to a second implant location within the heart. A conductive wire connects the housing to the electrode, wherein movement of the housing out of the sheath causes the electrode to follow the movement to a distal end of the sheath.
    Type: Grant
    Filed: January 17, 2012
    Date of Patent: July 15, 2014
    Assignee: Pacesetter, Inc.
    Inventors: Gene A. Bornzin, John W. Poore, Zoltan Somogyi
  • Patent number: 8712543
    Abstract: A device that can be temporarily introduced in a body or permanently implanted in a body comprising at least one elongated electric function conductor for transmitting treatment signals or diagnostic signals, or both, and further comprising a connector, which is connected to the function conductor and disposed on a proximal end of the function conductor, for connecting the device to a further device. Characteristic impedance is present between the function conductor and at least one further conductor. A transition region from the function conductor to the connector is designed such that a characteristic impedance between the function conductor and the further conductor in the transition region is designed to be between the corresponding characteristic impedance of the device in a line section distal of the transition region and the characteristic impedance present proximal of the transition region when the connector is connected to a further device.
    Type: Grant
    Filed: March 28, 2012
    Date of Patent: April 29, 2014
    Assignee: Biotronik SE & Co. KG
    Inventors: Klaus Bartels, Timo Frenzel, Stefan Knorr, Gernot Kolberg, Michelle Maxfield
  • Patent number: 8700183
    Abstract: A device may include an implantable circuit and at least one pair of implantable electrodes, in electrical communication with the implantable circuit. The circuit and the electrodes may configured for implantation in a subject in the vicinity of a nerve. The circuit may be configured to deliver to the electrodes an electrical signal having a current less than about 1.6 milliamps, and the electrodes may be configured to emit an electric field such that a portion of the field lines extend along a length of the nerve such that the delivery of the electrical signal of less than about 1.6 milliamps causes modulation of the nerve.
    Type: Grant
    Filed: September 28, 2012
    Date of Patent: April 15, 2014
    Assignee: Nyxoah SA
    Inventor: Adi Mashiach
  • Patent number: 8644951
    Abstract: An MRI compatible medical device includes a non-magnetic metal alloy portion including a first and at least a second metal. A surface of the metal alloy portion includes an integral MRI heating resistant surface structure having a thickness?3 nanometers. The MRI heating resistant surface structure includes one or more of (i) a matrix phase including the first and second metal having a plurality of nanometer or micron scale particles, precipitates and/or inclusions constituting a volume fraction?3%, wherein the particles, precipitates or inclusions differ in chemical composition and physical characteristics of the matrix phase and are discontinuously distributed therein; (ii) a level of crystallinity at least 5% less as compared to a level of crystallinity in the bulk of the metal alloy portion; (iii) one or more metal atoms different from the first and second metal having a concentration profile evidencing diffusion into the metal alloy portion.
    Type: Grant
    Filed: December 2, 2009
    Date of Patent: February 4, 2014
    Assignee: University of Central Florida Research Foundation, Inc.
    Inventors: Rajan Vaidyanathan, Stina Cecilia Larsson
  • Patent number: 8639348
    Abstract: Systems and methods of providing life support are provided. A life support system includes a first life support device that has a control unit and is configured to apply a life support protocol to a subject. The first life support device also includes a memory unit that can store life support protocol information, and the control unit can provide the life support protocol information to a second life support device. The control unit can also receive operating instructions from the second life support device based on the life support protocol information, and can implement the operating instructions.
    Type: Grant
    Filed: June 29, 2012
    Date of Patent: January 28, 2014
    Assignee: Zoll Medical Corporation
    Inventor: Frederick J. Geheb
  • Patent number: 8639324
    Abstract: An implantable or ambulatory medical device can include a cardiac signal sensing circuit configured to provide a sensed cardiac depolarization signal of a heart of a subject, a respiration sensing circuit configured to provide a signal representative of respiration of the subject, and a control circuit communicatively coupled to the cardiac signal sensing circuit and the respiration circuit. The control circuit includes a tachyarrhythmia detection circuit configured to determine heart rate using the depolarization signal, determine a respiration parameter of the subject using the respiration signal, calculate a ratio using the determined heart rate and the determined respiration parameter, generate an indication of tachyarrhythmia when the calculated ratio satisfies a specified detection ratio threshold value, and provide the indication of tachyarrhythmia to a user or process.
    Type: Grant
    Filed: January 19, 2012
    Date of Patent: January 28, 2014
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Efdal Elferri, Randall L. McPherson, Donald L. Hopper, Gary T. Seim, James O. Gilkerson, Dan Li, David L. Perschbacher
  • Patent number: 8615310
    Abstract: A delivery system for implanting a leadless cardiac pacemaker into a patient is provided. The cardiac pacemaker can include a docking or delivery feature having a through-hole disposed on or near a proximal end of the pacemaker for attachment to the delivery system. In some embodiments, the delivery catheter can include first and second tethers configured to engage the delivery feature of the pacemaker. The tethers, when partially aligned, can have a cross-sectional diameter larger than the through-hole of the delivery feature, and when un-aligned, can have a cross-sectional diameter smaller than the through-hole of the delivery feature. Methods of delivering the leadless cardiac pacemaker with the delivery system are also provided.
    Type: Grant
    Filed: December 13, 2011
    Date of Patent: December 24, 2013
    Assignee: Pacesetter, Inc.
    Inventors: Alexander Khairkhahan, Alan Klenk
  • Patent number: 8612000
    Abstract: In a pacing mode where the left ventricle is paced upon expiration of an escape interval that is reset by a right ventricular sense, there is the risk that the left ventricular pace may be delivered in the so-called vulnerable period that occurs after a depolarization and trigger an arrhythmia. To reduce this risk, a left ventricular protective period (LVPP) may be provided. Methods and devices for implementing an LVPP in the context of multi-site left ventricular pacing are described.
    Type: Grant
    Filed: December 15, 2011
    Date of Patent: December 17, 2013
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Jeffrey E. Stahmann, James O. Gilkerson, Krzysztof Z. Siejko, Yinghong Yu
  • Patent number: 8583243
    Abstract: A prosthesis is provided comprising a substrate having a distal end and a proximal end; and a plurality of electrodes located at or adjacent the distal end of the substrate. The distal end of the substrate is configured for insertion, via an incision, between first and second tissue layers, such as the sclera and choroid in the eye. The prosthesis tapers in thickness towards the distal end and has a substantially curved provide profile at least on one surface so that the prosthesis can be inserted into position without needing a guide and without causing damage to the tissue or the prosthesis. The prosthesis can include an electrode interface unit located at or adjacent the proximal end of the substrate which locates between the tissue layers. An anchor portion can be provided that extends from the substrate into the incision.
    Type: Grant
    Filed: August 25, 2010
    Date of Patent: November 12, 2013
    Assignee: The Bionics Institute of Australia
    Inventors: Christopher Edward Williams, Penelope Jayne Allen, Joel Villalobos Villa
  • Patent number: 8554312
    Abstract: A disclosed apparatus includes a first signal line configured to couple signals from a first electrode to a signal detection circuitry for measurement of biometric signals sensed by the first electrode; a second signal line configured to couple signals from a second electrode, which is different from the first electrode, to the signal detection circuitry for measurement of biometric signals sensed by the second electrode; and a coupling circuitry configured to selectively couple the first signal line and the second signal line to a common electrical potential so as to equalize electrical potential difference between the first electrode and the second electrode.
    Type: Grant
    Filed: December 13, 2011
    Date of Patent: October 8, 2013
    Assignee: Polar Electro Oy
    Inventor: Elias Pekonen
  • Patent number: 8538529
    Abstract: Method and apparatus for converting the output of a thermoelectric generator to voltages compatible with implantable medical devices is provided. One apparatus includes an implantable thermoelectric generator. The apparatus includes an input terminal for receiving an input voltage generated by a thermoelectric energy converter and a charging inductor connected in series with the input terminal. The apparatus also includes a switching Field Effect Transistor (FET) connected to the inductor, and a capacitor connected to the FET and the input terminal via a diode. The FET is switched with a frequency and duty cycle such that a voltage level at an output terminal is compatible with an implantable medical device. According to various embodiments, the FET is switched using a closed loop feedback system that controls the frequency and duty cycle based on an observed voltage level at the output terminal. Other aspects and embodiments are provided herein.
    Type: Grant
    Filed: March 5, 2007
    Date of Patent: September 17, 2013
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Kristofer J. James, Blair Erbstoeszer, Glenn Morita
  • Patent number: 8538522
    Abstract: One way in which cardiac resynchronization therapy may be delivered is to only deliver paces to the left ventricle. If left ventricular pacing is inhibited during a cardiac cycle, it may be desirable to deliver a right ventricular safety pace to prevent asystole. Methods and devices for implementing right ventricular safety pacing in the context of multi-site left ventricular-only pacing are described.
    Type: Grant
    Filed: December 15, 2011
    Date of Patent: September 17, 2013
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Jeffrey E. Stahmann, James O. Gilkerson, Krzysztof Z. Siejko, James Kalgren, Yinghong Yu
  • Patent number: 8535212
    Abstract: Blood pumps used as heart assist devices are commonly powered by an external battery and control system. If the external power is interrupted, such as by damaging an external cable, patients will have backflow across the pump. If the flow is too high, they may decompensate and die. If the backflow is relatively low, patients can survive until power is restored, but their blood pump must be sufficiently washed to prevent thrombus. Centrifugal blood pumps have been designed for good pumping performance, low blood damage, and avoidance of thrombus when they are running. The present invention recognizes the need to also provide enough washing to prevent thrombus when the pump power is turned off. The invention provides centrifugal pumps with triple or quadruple volute designs, or with axial flow impellers on the same shaft as the centrifugal pump impeller to help drive the rotor in reverse and enhance washing even with relatively low backflow.
    Type: Grant
    Filed: March 30, 2011
    Date of Patent: September 17, 2013
    Inventor: Jarvik Robert
  • Patent number: 8521294
    Abstract: A DBS system and method for predicting future neurological activity in a subject and administering a corrective electrical stimulation signal to prevent anticipated pathological neuronal activity. The DBS system includes an implantable electrode configured to both record neuronal activity from a target brain area in a subject and administer the corrective electric stimulation signal to the target area. The DBS system also includes a controller configured to determine the characteristics of the corrective electrical stimulation signal based on point process models of healthy and pathological neuronal activity in the target area.
    Type: Grant
    Filed: October 26, 2009
    Date of Patent: August 27, 2013
    Assignee: The General Hospital Corporation
    Inventors: Sridevi V. Sarma, Emery N Brown, Emad Eskandar
  • Patent number: 8521292
    Abstract: Techniques for managing urinary or fecal incontinence include delivering a first type of therapy to generate a first physiological response and, upon detecting a trigger event, delivering a second type of therapy to generate a second physiological response. The first type of therapy can be delivered on a substantially regular basis, while the second type of therapy is delivered as needed to provide an additional boost of therapy. The trigger event for activating the delivery of the second type of therapy may include input from a sensor that indicates a bladder condition, patient activity level or patient posture, or patient input. In some examples, the therapy is stimulation therapy. In some examples, objective incontinence information is generated based upon the trigger events. The system and/or user may then use this objective incontinence information to adjust therapy or select new therapy programs for improved efficacy.
    Type: Grant
    Filed: October 21, 2010
    Date of Patent: August 27, 2013
    Assignee: Medtronic, Inc.
    Inventors: Xuan Wei, Eric H. Bonde
  • Patent number: 8463377
    Abstract: Various embodiments of an implantable system for delivering therapy comprise at least one of a heat sink or source to either reduce or increase temperature of excitable tissue, a pulse generator and at least one stimulation electrode to deliver electrical stimulation to excitable tissue, a memory and a controller. The memory has instructions for performing at least one stimulation routine and at least one thermal routine, and further has integration instructions for integrating the thermal routine(s) with the stimulation routine(s). The controller is configured to operate on the instructions to perform the stimulation routine(s) using the pulse generator and the at least one stimulation electrode, to perform the thermal routine(s) using the heat sink or the heat source, and to operate on the integration instructions to integrate thermal routine(s) with the stimulation routine(s).
    Type: Grant
    Filed: May 6, 2010
    Date of Patent: June 11, 2013
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Barun Maskara, Jason J. Hamann, Stephen Ruble, Craig Stolen