Patents Examined by Evelyn A. Defillo
  • Patent number: 6007624
    Abstract: A method for controlling the autodoping during epitaxial silicon deposition. First, the substrate (10) is cleaned to remove any native oxide. After being cleaned, the substrate (10) is transferred to the deposition chamber in an inert or vacuum atmosphere to inhibit the growth of a native oxide on the surface of the wafers. A lower temperature (i.e., 500-850.degree. C.) capping layer (14) is deposited to prevent autodoping. Then, the temperature is increased to the desired deposition temperature and the remainder of the epitaxial layer (18) is deposited.
    Type: Grant
    Filed: August 30, 1996
    Date of Patent: December 28, 1999
    Assignee: Texas Instruments Incorporated
    Inventor: Rick L. Wise
  • Patent number: 5925310
    Abstract: A method of making a perforated silicon carbide product in a shorter time and with less labor work to achieve a lower cost and high yield. Openings 13a, 13b are previously formed in a mold 11, and inserts 14 are inserted into the openings to project toward the inside of the mold. A slurry 15 composed of a mixture of a silicon carbide powder, an organic binder and water is put in the mold to conduct a slip casting molding method whereby a molded green product with perforation 16 is obtained.
    Type: Grant
    Filed: March 26, 1997
    Date of Patent: July 20, 1999
    Assignees: Asahi Glass Company Ltd., Pacific Rundum Company Ltd.
    Inventors: Takahiro Nakayama, Nobuo Kageyama, Takashi Chikaso
  • Patent number: 5879450
    Abstract: A method and an apparatus have been developed to deposit heteroepitaxial beta-silicon carbide films on silicon using bias-assisted hot filament chemical vapor deposition (BA-HFCVD). The apparatus includes a graphite plate as the carbon source and the silicon substrate as the silicon source. Hydrogen was the only feeding gas to the system.
    Type: Grant
    Filed: August 13, 1997
    Date of Patent: March 9, 1999
    Assignee: City University of Hong Kong
    Inventors: Shuit Tong Lee, Chun Sing Lee, Bello Igor, Yat Wah Lam, Hin Koon Woo
  • Patent number: 5846318
    Abstract: Method and system for use with a Czochralski crystal growing apparatus. The crystal growing apparatus has a heated crucible for melting solid silicon to form a melt from which the single crystal is pulled. The melt has an upper surface above which unmelted silicon is exposed until melted. A camera generates images of a portion of the interior of the crucible. Each image includes a plurality of pixels and each pixel has a value representative of an optical characteristic of the image. An image processor processes the images as a function of the pixel values to detect edges in the images and groups the detected edges as a function of their locations in the images to define objects in the images. The defined objects each include one or more pixels and at least one of the defined objects is representative of a portion of solid silicon which is visible on the melt surface.
    Type: Grant
    Filed: July 17, 1997
    Date of Patent: December 8, 1998
    Assignee: MEMC Electric Materials, Inc.
    Inventor: Massoud Javidi
  • Patent number: 5837054
    Abstract: Crystals formed of a solid-solution of NiSiF.sub.6 6H.sub.2 O provide very good materials for filtering ultraviolet light and will not deteriorate in temperatures as high as 115.degree. C. They are particularly useful in sensing devices which seek to identify the presence of ultraviolet light in the UV missile warning band.
    Type: Grant
    Filed: August 30, 1996
    Date of Patent: November 17, 1998
    Assignee: Northrop Grumman Corporation
    Inventors: Narsingh B. Singh, William D. Partlow, Steven Strauch, Albert M. Stewart, John F. Jackovitz, David W. Coffey, Robert Mazelski
  • Patent number: 5833748
    Abstract: A process and an apparatus for obtaining unfissured crystals of GaAs after the crystal has been formed by direction solidification from a melt in a quartz crucible. The quartz crucible is immersed in molten potassium hydroxide or sodium hydroxide at a temperature of 450.degree. to 600.degree. C.
    Type: Grant
    Filed: October 29, 1996
    Date of Patent: November 10, 1998
    Assignee: Forschungszentrum Julich GmbH
    Inventors: Martin Althaus, Eckhard Kussel, Klaus Sonnenberg
  • Patent number: 5824151
    Abstract: The method of forming a III-V group compound semiconductor crystalline layer on a semiconductor crystal containing at least V-group compound, includes the steps of: performing the crystal growth of the III-V compound semiconductor crystalline layer; and supplying an n-type dopant and a material compound containing a V-group element onto the semiconductor crystal without causing the crystal growth of the III-V compound semiconductor crystalline layer.
    Type: Grant
    Filed: May 21, 1997
    Date of Patent: October 20, 1998
    Assignee: Sharp Kabushiki Kaisha
    Inventor: Nobuhiro Ohkubo
  • Patent number: 5817174
    Abstract: A method of treating a semiconductor substrate, which comprises the steps of subjecting a surface of the semiconductor substrate to an annealing treatment, performing an etching treatment of the surface of the semiconductor substrate under a condition where the semiconductor substrate is substantially prevented from being etched and a precipitate exposed from the surface of the semiconductor substrate is selectively etched away, and forming a monocrystalline film of a semiconductor material constituting the semiconductor substrate on the surface of the semiconductor substrate.
    Type: Grant
    Filed: December 13, 1996
    Date of Patent: October 6, 1998
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Hiroshi Tomita, Mami Takahashi
  • Patent number: 5800611
    Abstract: A single crystal silicon sheet is formed from a polycrystalline sheet by melting a relatively small portion of the sheet at an initial location and defining a single crystallographic orientation for the silicon by placing a small silicon seed crystal in contact with the melted silicon at the initial location. The melted portion is then moved from the initial location throughout the sheet to move impurities in the sheet to the edges of the sheet and to extend the crystallographic orientation of the silicon established at the initial location to the whole sheet, inwardly of the edges. The edges containing impurities and any remaining polycrystalline structure are removed to produce a sheet of single crystal silicon. A polycrystalline sheet may be formed by spreading a slurry of a silicon powder, a binder, and solvent on a surface and allowing the solvent to evaporate to form a sheet. The sheet is moistened to cause it to expand and sheer clear of the surface.
    Type: Grant
    Filed: September 8, 1997
    Date of Patent: September 1, 1998
    Inventor: Howard Christensen
  • Patent number: 5788767
    Abstract: The present invention is a method for using a single SiN layer as a passivation film. The single layer SiN can be strengthened to withstand stress by adjusting the process parameters during formation of the SiN layer. In general, the process can be changed by increasing the low frequency power 5% during the deposition. Alternatively, the pressure of the SiN deposition may be decreased about 20% in pressure.
    Type: Grant
    Filed: December 31, 1996
    Date of Patent: August 4, 1998
    Assignee: Vanguard International Semiconductor Corporation
    Inventors: Jun-Cheng Ko, Liang-Tung Tony Chang
  • Patent number: 5788765
    Abstract: Crystals formed of a solid-solution of K.sub.2 Ni(SO.sub.4).sub.2 6H.sub.2 O provide very good materials for filtering ultraviolet light and will not deteriorate in temperatures as high as 110.degree. C. They are particularly useful in sensing devices which seek to identify the presence of ultraviolet light in the UV missile warning band.
    Type: Grant
    Filed: August 30, 1996
    Date of Patent: August 4, 1998
    Assignee: Northrop Grumman Corporation
    Inventors: Narsingh B. Singh, William D. Partlow, Steven Strauch, Albert M. Stewart, John F. Jackovitz, David W. Coffey
  • Patent number: 5772755
    Abstract: Oriented materials are described in which particular crystalline materials are grown on a highly-oriented polytetrafluoroethylene substrate. Compositions are provided comprising a layer of aligned molecular chains of oriented polytetrafluoroethylene and an overlayer of a second polymer that imparts desired properties to the construction. A third layer of crystallizable, orientable material is then deposited on the overlayer. The third layer becomes oriented. The materials are useful as polarizers when the third layer is a polarizing dye.
    Type: Grant
    Filed: August 1, 1996
    Date of Patent: June 30, 1998
    Assignee: W. L. Gore & Associates, Inc.
    Inventors: Jack Hegenbarth, Diane R. Carpenter
  • Patent number: 5743956
    Abstract: A method of producing a high-quality single crystal thin film in which a temperature of a semiconductor single crystal substrate is raised or lowered in a short time with no occurrence of slippage in the substrate. In a cold-wall type reaction vessel, a substrate is placed on a holder which has no heating capability in the reaction vessel and a thin film is grown on the substrate, while a reaction gas is fed to flow in one direction through the reaction vessel, and at the same time, a temperature profile on the substrate along the flow direction of the reaction gas is adjusted to be uniform by a spatially controlled heating energy distribution and/or with the help of an auxiliary heating region provided at an upstream part of the substrate.
    Type: Grant
    Filed: June 17, 1996
    Date of Patent: April 28, 1998
    Assignee: Shin-Etsu Handotai, Co., Ltd.
    Inventors: Hitoshi Habuka, Masanori Mayuzumi