Patents Examined by Farshad Negarestan
  • Patent number: 9204862
    Abstract: A method for generating a spatially compounded image includes acquiring ultrasound information from two or more scan planes, wherein the scan planes are mutually offset by a spatial distance, and wherein at least one of the scan planes is non-planar such that the spatial distance between the scan planes is a function of depth, and combining the information from the scan planes to generate a compounded image. A system and non-transitory computer readable medium are also described herein.
    Type: Grant
    Filed: July 8, 2011
    Date of Patent: December 8, 2015
    Assignee: General Electric Company
    Inventors: Geir Ultveit Haugen, Kjell Kristoffersen, Anders R. Sornes
  • Patent number: 9198598
    Abstract: Desired imaging is performed within the SAR restriction without changing the imaging conditions set in advance when SAR exceeds an upper limit. In order to do so, in imaging of an object performed by combination of a plurality of pulse sequences, a SAR graph showing a temporal change in the predicted SAR value of each pulse sequence is displayed. When the predicted SAR value of the pulse sequence is the same as or exceeds the upper SAR limit, the exchange of such pulse sequences or the insertion of a waiting time is performed.
    Type: Grant
    Filed: March 24, 2011
    Date of Patent: December 1, 2015
    Assignee: HITACHI MEDICAL CORPORATION
    Inventors: Miyuki Kawamura, Kosuke Ito, Hisako Nagao
  • Patent number: 9186101
    Abstract: A physiological monitoring system may determine physiological information, such as physiological rate information, from a physiological signal. The system may generate a correlation sequence using two segments of the physiological signal. The system may determine a first correlation lag value that corresponds to a peak in the correlation sequence, and also determine a second correlation lag value equal to a fraction of the first correlation lag value. The fraction may be, for example, one half. The system may qualify or disqualify the correlation lag value based on the correlation value at the second lag value. The system may compare the correlation value at the second lag value to a threshold, to the correlation sequence at the first lag value, or both.
    Type: Grant
    Filed: September 11, 2012
    Date of Patent: November 17, 2015
    Assignee: Covidien LP
    Inventors: Fernando Rodriguez-Llorente, Pirow Engelbrecht, Nicholas James Wooder
  • Patent number: 9186076
    Abstract: A physiological monitoring system may determine physiological information, such as physiological rate information, from a physiological signal. The system may determine a skew metric based on the physiological signal. The system may also determine a correlation lag value corresponding to a peak in a correlation sequence derived from the physiological signal. The system may qualify or disqualify the correlation lag value based on the skew metric. The system may, for example, compare the skew metric and the correlation lag value to a reference set of skew metric values and correlation lag values to determine whether to qualify or disqualify the correlation lag value.
    Type: Grant
    Filed: September 11, 2012
    Date of Patent: November 17, 2015
    Assignee: Covidien LP
    Inventors: Fernando Rodriguez-Llorente, Pirow Engelbrecht, Nicholas James Wooder
  • Patent number: 9179845
    Abstract: An optical sharp fibrous needle probe includes an optical fiber in a hollow needle ending in a cutting point. The optical fiber is inserted and bonded in the hollow of the needle and then polished to take on the exact needle cutting shape. The material to be explored is pricked by the needle. A light injection and recovery device is placed at the inlet of the fiber. The material located at the sharp end of the needle backscatters the incident light and generates an endogenous fluorescence signal. A part of this luminous flux is recovered by the point of the needle and sent back to the injection and recovery device. The same analyses the light in strength, duration and wavelength and enables a diagnostics without taking the in-depth explored material. An optical telemeter placed on the outer tip of the needle enables the depth of the explored area to be known.
    Type: Grant
    Filed: July 20, 2010
    Date of Patent: November 10, 2015
    Assignees: Université Paris-Sud, Centre National de la Recherche Scientifique
    Inventors: René Alfred Farcy, Lama Al Chab, Guillaume Dupuis, Marie-Pierre Fontaine-Aupart
  • Patent number: 9173604
    Abstract: A measurement device (1) includes a probe (7) which irradiates a specific part or a specific location of a living body with excitation light and which receives fluorescence generated by irradiating the specific part or the specific location with excitation light.
    Type: Grant
    Filed: November 17, 2010
    Date of Patent: November 3, 2015
    Assignee: SHARP KABUSHIKI KAISHA
    Inventors: Mikihiro Yamanaka, Megumi Hijikuro, Keita Hara
  • Patent number: 9161723
    Abstract: A physiological monitoring system may determine physiological information, such as physiological rate information, from a physiological signal. The system may receive a calculated value indicative of a physiological rate. The system may generate and sort multiple difference signals based on the physiological signal. The system may analyze a first sorted difference signal and a second sorted difference signal to determine at least one first metric, and analyze a third sorted difference signal and a fourth sorted difference signal to determine at least one second metric. The system may qualify or disqualify the calculated value based on the at least one first and second metrics. The segments used to generate the third and fourth sorted difference signals may, for example, be subsets of the segments used to generate the first and second sorted difference signals.
    Type: Grant
    Filed: September 11, 2012
    Date of Patent: October 20, 2015
    Assignee: Covidien LP
    Inventors: Fernando Rodriguez-Llorente, Pirow Engelbrecht, Nicholas James Wooder
  • Patent number: 9149232
    Abstract: A physiological monitoring system may determine physiological information, such as physiological rate information, from a physiological signal. The system may receive a calculated value indicative of a physiological rate. Based on the value, the system may select pairs of values of the physiological signal that are particularly spaced. The system may determine a state for each pair of values. The state may correspond to a set of criteria such as, for example, equalities, inequalities, logical operators, or other criteria. The system may determine a number of state transitions based on the determined states, and qualify or disqualify the calculated value based on the number of state transitions.
    Type: Grant
    Filed: September 11, 2012
    Date of Patent: October 6, 2015
    Assignee: Covidien LP
    Inventors: Fernando Rodriguez-Llorente, Pirow Engelbrecht, Nicholas James Wooder
  • Patent number: 9119598
    Abstract: A physiological monitoring system may process a physiological signal such a photoplethysmograph signal from a subject. The system may determine physiological information, such as a physiological rate, from the physiological signal. The system may use search techniques and qualification techniques to determine one or more initialization parameters. The initialization parameters may be used to calculate and qualify a physiological rate. The system may use signal conditioning to reduce noise in the physiological signal and to improve the determination of physiological information. The system may use qualification techniques to confirm determined physiological parameters. The system may also use autocorrelation techniques, cross-correlation techniques, fast start techniques, and/or reference waveforms when processing the physiological signal.
    Type: Grant
    Filed: September 11, 2012
    Date of Patent: September 1, 2015
    Assignee: Covidien LP
    Inventors: Pirow Engelbrecht, Fernando Rodriguez-Llorente
  • Patent number: 9107575
    Abstract: An intracranial implant to position a fiber bundle to a specified region of a brain of an animal. The implant may include a base support to be fixed to a skull of the animal over an orifice drilled in the skull, a hollow conduit arranged through the base support to guide the fiber bundle to the brain of the animal through the drilled orifice and a first locking member arranged on the base support, to cooperate with a ferrule of the fiber bundle, the first locking member configured to lock the fiber bundle to the specified region of the brain of the animal.
    Type: Grant
    Filed: July 19, 2010
    Date of Patent: August 18, 2015
    Assignee: Mauna Kea Technologies
    Inventors: Nicolas Boularot, Arnaud Cressant
  • Patent number: 9072441
    Abstract: An imaging system comprises a plurality of imaging detectors for acquiring imaging data. The plurality of imaging detectors is configurable to be arranged proximate to an anatomy of interest within a patient. Each of the plurality of imaging detectors has a field of view (FOV) and at least a portion of the plurality of imaging detectors image the anatomy of interest within the respective FOV. A processor receives the imaging data and processes the imaging data to form a multi-dimensional dataset having at least three dimensions.
    Type: Grant
    Filed: August 8, 2006
    Date of Patent: July 7, 2015
    Assignee: GE Medical Systems Israel, LTD.
    Inventors: Eyal Shai, Yaron Hefetz, Ira Micah Blevis
  • Patent number: 9042965
    Abstract: An intracorporeal marker, for marking a site within living tissue of a host, includes an outer body portion of biodegradable material. An inner body portion is located in the outer body portion. The inner body portion includes biological material that becomes calcified in the living tissue of the host over time. An agent interacts with the biological material to promote calcification of the biological material of the inner body portion in the living tissue of the host.
    Type: Grant
    Filed: March 6, 2013
    Date of Patent: May 26, 2015
    Assignee: C. R. Bard, Inc.
    Inventors: Dnyanesh A. Talpade, Chandrashekhar Pathak
  • Patent number: 9037245
    Abstract: A method of implanting electrically conductive leads in the gastrointestinal musculature for stimulation of target tissues involves an endoscopic approach through the esophagus. An endoscope is inserted into the esophagus of a patient. The mucosal surface of the anterior esophagus is punctured in the region encompassing the lower esophageal sphincter (LES). A tunnel is created through the submucosa and exits at the muscularis propria, adventitia, or serosal side of the stomach. The lead is navigated further to the anterior abdominal wall. A first end of the lead remains within the gastrointestinal musculature while a second end of the lead is positioned just outside the anterior abdominal wall. The first end of the lead comprises at least one electrode. An implantable pulse generator (IPG) is implanted and operably connected to the second end of the lead to provide electrical stimulation to target tissues.
    Type: Grant
    Filed: September 2, 2012
    Date of Patent: May 19, 2015
    Assignee: EndoStim, Inc.
    Inventors: Virender K. Sharma, Shai Policker, Paul V. Goode, Bevil Hogg
  • Patent number: 9028411
    Abstract: An ultrasound imaging system with pixel oriented processing is provided in which an acoustic signal is generated, echoes from the acoustic signal are received at a plurality of receiving elements to obtain echo signals that are then stored, a given pixel is mapped into a region of the stored signals, the mapped region of the stored echo signals is organized into array for the given pixel after which the array is processed to generate a signal response for the given pixel to obtain acoustic information for the given pixel. The system can be implemented entirely on plug-in cards for a commercial PC motherboard. The system and method can be implemented for pixel-oriented or voxel-oriented image processing and display, eliminating intermediate data computations and enabling extensive use of software processing methods. Advantages include improved acquisition of signal dynamic range, flexible acquisition modes for high frame rate 2D, 3D, and Doppler blood flow imaging.
    Type: Grant
    Filed: October 15, 2012
    Date of Patent: May 12, 2015
    Assignee: Verasonics, Inc.
    Inventor: Ronald Elvin Daigle
  • Patent number: 9017262
    Abstract: Methods and systems for connection to a transducer in ultrasound probes are provided. One connection arrangement includes a connector having a transducer connection portion configured to couple to a transducer of an ultrasound probe and a scan head connection portion configured to extend from a scan head of the ultrasound probe containing the transducer. The transducer connection portion and the scan head connection portion being a single element.
    Type: Grant
    Filed: January 2, 2012
    Date of Patent: April 28, 2015
    Assignee: General Electric Company
    Inventors: Reinhold Bruestle, Wolfgang Dieter Knoll, Christian Heinrich, Christian Holl
  • Patent number: 8992428
    Abstract: Operation of a patient's heart or lungs may be analyzed by transmitting ultrasound energy into the patient's lung, and detecting Doppler shifts of reflected ultrasound induced by moving borders between blood vessels/soft tissue in the lung and air filled alveoli that surround the blood vessels. Movement of the border is caused by pressure waves in the blood vessels that result in changes in diameter of those blood vessels. The detected Doppler shifts are processed with a noise reduction algorithm, and periodic features in the resulting data are then analyzed to determine the rate of the patient's heartbeat, the rate of the patient's breathing, and/or the appearance of anomalies in the patient's heartbeat.
    Type: Grant
    Filed: February 2, 2012
    Date of Patent: March 31, 2015
    Assignee: Echosense Inc.
    Inventor: Yoram Palti
  • Patent number: 8989845
    Abstract: A CT imaging system (12) generates structural data of a first FOV which is reconstructed by a CT reconstruction processor (52) into a CT image representation. A nuclear imaging system acquires functional data from a second FOV which is smaller than the first FOV. A first PET reconstruction processor (60) reconstructs the functional data into a PET image representation. A fusion processor (64) combines the PET image representation with a map extracted from the CT image representation to generate an extended FOV image representation. A spill-over correction unit (66) and a backscatter correction unit (68) derive spill-over correction data and backscatter correction data from the extended FOV image representation. A reconstruction processor (70) generates a spill-over and backscatter corrected functional image representation based on the spill-over correction data, the backscatter correction data, and the functional data.
    Type: Grant
    Filed: January 12, 2010
    Date of Patent: March 24, 2015
    Assignee: Koninklijke Philips N.V.
    Inventors: Ralph Brinks, Eike G. Gegenmantel
  • Patent number: 8983577
    Abstract: The present invention relates to a system for determining the orientation of a catheter (2). The system comprises a catheter (2), an asymmetric marker (11) attached to the catheter (2), and an imaging unit (25) for generating a projection image of the asymmetric marker (11), wherein the imaging unit (25) comprises a radiation source for generating radiation for projecting the asymmetric marker (11) in a projection plane and a detection unit for generating the projection image of the asymmetric marker (11) projected in the projection plane. The system comprises further an orientation determination unit for determining the orientation of the asymmetric marker (11) from the projection image of the asymmetric marker (11) and for determining the orientation of the catheter (2) from the determined orientation of the asymmetric marker (11). The asymmetric marker (11) is adapted such that the orientation of the asymmetric marker (11) is determinable from the projection image of the asymmetric marker (11) alone.
    Type: Grant
    Filed: February 4, 2010
    Date of Patent: March 17, 2015
    Assignee: Koninklijke Philips N.V.
    Inventors: Eberhard Sebastian Hansis, Michael Grass
  • Patent number: 8971994
    Abstract: A method for displaying a position of a medical device, such as a catheter, during insertion thereof into a patient. In one example embodiment, the method includes obtaining a first set of detected position data relating to a location marker, such as a permanent magnet, then determining a possible first position thereof. A first confidence level relating to a match between the first set of detected position data and a first set of predicted position data is assigned. A determination is made whether the first confidence level meets or exceeds a first threshold. If the first confidence level meets or exceeds the first threshold, a determination is then made whether the first position of the location marker is within a first detection zone. If the first position of the location marker is within the first detection zone, the first position of the location marker is displayed.
    Type: Grant
    Filed: April 8, 2013
    Date of Patent: March 3, 2015
    Assignee: C. R. Bard, Inc.
    Inventors: Eddie K. Burnside, Shayne Messerly, Robert N. Golden, Rand W. Lee
  • Patent number: 8905934
    Abstract: Object is that an output sound pressure at transmission or an output voltage at reception of a predetermined higher resonance component becomes higher than those of the primary resonance component. The piezoelectric material layer 24 has an electrode on the surface of the piezoelectric material of between the layer and both ends, and outputs and inputs an electrical signal with this electrode. The piezoelectric material 24 has a remanent polarization in a thickness direction, the relationship of the (4P+1)th layer piezoelectric material from fixed end side is used as the basic relationship, piezoelectric materials are periodically arranged so that piezoelectric materials of (4p+2)th and (4p+3)th layer each has an opposite relationship, and (4p+4)th layer has the same relationship as the basic relationship.
    Type: Grant
    Filed: September 7, 2012
    Date of Patent: December 9, 2014
    Assignee: Konica Minolta Medical & Graphic, Inc.
    Inventor: Yuichi Nishikubo