Patents Examined by Felisa Hiteshaw
  • Patent number: 7258744
    Abstract: The present invention discloses a graphite heater for producing a single crystal used when producing a single crystal by the Czochralski method which comprises at least a terminal part to which electric current is supplied and a cylindrical heat generating part by resistance heating and are provided so as to surround a crucible for containing a raw material melt wherein the heat generating part has heat generating slit parts formed by being provided with upper slits extending downward from the upper end and lower slits extending upwards from the lower end by turns, and a length of at least one slit of the upper slits differs from others and/or a length of at least one slit of the lower slits differs from others so that a heat generating distribution of the heat generating part may be changed.
    Type: Grant
    Filed: December 8, 2003
    Date of Patent: August 21, 2007
    Assignee: Shin-Etsu Handotai Co., Ltd.
    Inventors: Masahiro Sakurada, Izumi Fusegawa, Satoshi Soeta, Makoto Iida
  • Patent number: 6727182
    Abstract: It is an object of the present invention to provide a process for a fluorine containing carbon film (a CF film), which can put an interlayer insulator film of a fluorine containing carbon film into practice. A conductive film, e.g., a TiN film 41, is formed on a CF film 4. After a pattern of a resist film 42 is formed thereon, the TiN film 41 is etched with, e.g., BCl3 gas. Thereafter, when the surface of the wafer is irradiated with O2 plasma, the CF film is chemically etched, and the resist film 42 is also etched. However, since the TiN film 41 functions as a mask, a predetermined hole can be formed. Although an interconnection layer of aluminum or the like is formed on the surface of the CF film 4, the TiN film 41 functions as an adhesion layer for adhering the interconnection layer to the CF film 4 and serves as a part of the interconnection layer. As the mask, an insulator film of SiO2 or the like may be substituted for the film.
    Type: Grant
    Filed: October 15, 1998
    Date of Patent: April 27, 2004
    Assignee: Tokyo Electron Limited
    Inventors: Takashi Akahori, Shuichi Ishizuka, Shunichi Endo, Takeshi Aoki, Tadashi Hirata
  • Patent number: 6645293
    Abstract: Methods for the crystallization of nano-size crystals of molecular organic compounds while operating at a low supersaturation. The methods are based on controlling the domain size available during the crystallization process. In one exemplary method, microcontacted printed self-assembled monolayers (SAMs) with local domain area sizes ranging up to 2500 &mgr;m2 and fabricated SAMs generated from electron beam lithography, are employed to control the size, orientation, phase, and morphology of the crystal. In another exemplary method, a continuous micro-crystallizer having a vessel diameter of 25 microns or less is used to ensure that that the maximum size of the crystals in at least one dimension, ad preferably two dimensions is constrained by the vessel itself. The methods allow control of supersaturation and growth conditions, as well as manageability over crystallinity and polymorphism, and each method's domain size has the potential for further reduction.
    Type: Grant
    Filed: March 7, 2002
    Date of Patent: November 11, 2003
    Assignee: Illinois Institute of Technology
    Inventor: Allan S. Myerson
  • Patent number: 6613689
    Abstract: An oxide etch process practiced in a plasma etch reactor, such as a magnetically enhanced reactive ion etch (MERIE) reactor. The etching gas includes approximately equal amounts of a hydrogen-free fluorocarbon, most preferably C4F6, and oxygen and a much larger amount of argon diluent gas. The magnetic field is preferably maintained above about 50 gauss and the pressure at 40 milliTorr or above with chamber residence times of less than 70 milliseconds. A two-step process may be used for etching holes with very high aspect ratios. In the second step, the magnetic filed and the oxygen flow are reduced. Other fluorocarbons may be substituted which have F/C ratios of less than 2 and more preferably no more than 1.6 or 1.5.
    Type: Grant
    Filed: May 13, 2002
    Date of Patent: September 2, 2003
    Assignee: Applied Materials, Inc
    Inventors: Jingbao Liu, Takehiko Komatsu, Hongqing Shan, Keji Horioka, Bryan Y Pu
  • Patent number: 6607986
    Abstract: In a method for dry-etching a coating by use of reactive gas which is activated, a second insulating layer containing carbon atoms which is formed on a first insulating layer containing carbon atoms is ashed by use of a gas containing carbon atoms and at least one of oxygen atoms, nitrogen atoms and hydrogen atoms. By using the above gas, the second insulating layer containing carbon atoms which is formed on the first insulating layer which is an underlying layer can be efficiently ashed and removed without removing carbon atoms in the side surface of the grooves formed in the first insulating layer and etching the side surface thereof. Thus, the side surface of the groove formed in the first insulating layer will not be modified or deformed.
    Type: Grant
    Filed: December 20, 2000
    Date of Patent: August 19, 2003
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Shoji Seta, Hideo Ichinose
  • Patent number: 6383285
    Abstract: A simple and inexpensive method and apparatus for producing crystalline silicon comprising the steps of melting silicon in a mold, then cooling the bottom of the mold is cooled to create a positive temperature gradient from the bottom of the mold upward, thereby causing the molten silicon to crystallize from the inner bottom of the mold upward so that the solid-liquid phase boundary, separating the crystallized silicon from the molten silicon, moves upward as the molten silicon crystallizes. As the silicon crystallizes, an inert gas is blown onto the surface of the molten silicon from a position above the surface of the molten silicon, thereby vibrating the surface of the molten silicon in such a manner that cavities are formed in the surface of the molten silicon.
    Type: Grant
    Filed: April 18, 2000
    Date of Patent: May 7, 2002
    Assignee: Mitsubishi Materials Corporation
    Inventors: Saburo Wakita, Yoshinobu Nakada, Junichi Sasaki, Yuji Ishiwari
  • Patent number: 6136094
    Abstract: The present invention is directed to a single crystal pulling crucible of carbon fiber reinforced carbon composite material formed by the filament windings by combination of axially reinforced layers as well as circumberentially reinforced layers, which combination is given in two or more sets, and to the producing method thereof. The circumferentially reinforced layers resist a force tending to exapand a drum portion of the crucible, and the axially reinforced layers resist a force tending to push down a bottom of the crucible. The axially reinforced layers extending from the bottom portion to the drum portion can be formed by at least either of a level winding of a contact angle of 0.degree. to 10.degree. with respect to the center axis and a poral winding, and the circumferentially reinforced layers in area adjacent to the drum portion out of the drum portion and the bottom portion can be formed by at least either of a parallel winding of a contact angle of 70.degree. to 90.degree.
    Type: Grant
    Filed: February 2, 1999
    Date of Patent: October 24, 2000
    Assignee: Toyo Tanso Co., Ltd.
    Inventors: Masatoshi Yamaji, Katsuhide Nagaoka, Toshiharu Hiraoka, Tsuyoshi Matsumoto, Satoshi Ishikawa