Patents Examined by Fikirte (Fiki) T Ashine
  • Patent number: 11982726
    Abstract: Tracer kinetic models are utilized as temporal constraints for highly under-sampled reconstruction of DCE-MRI data. In one embodiment, a method for improving dynamic contrast enhanced imaging. The method includes steps of administering a magnetic resonance contrast agent to a subject and then collecting magnetic resonance contrast agent from the subject. A tracer kinetic model (i.e. eTofts or Patlak) is selected to be applied to the magnetic resonance imaging data. The tracer kinetic model is applied to the magnetic resonance imaging data. Tracer kinetic maps and dynamic images are simultaneously reconstructed and a consistency constraint is applied. The proposed method allows for easy use of different tracer kinetic models in the formulation and estimation of patient-specific arterial input functions jointly with tracer kinetic maps.
    Type: Grant
    Filed: April 15, 2019
    Date of Patent: May 14, 2024
    Assignee: University of Southern California
    Inventors: Krishna S. Nayak, Yannick Bliesener, Yi Guo, Yinghua Zhu, Sajan Goud Lingala, Robert Marc Lebel
  • Patent number: 11980778
    Abstract: A histotripsy therapy system configured for the treatment of tissue is provided, which may include any number of features. Provided herein are systems and methods that provide efficacious non-invasive and minimally invasive therapeutic, diagnostic and research procedures. In particular, provided herein are optimized systems and methods that provide targeted, efficacious histotripsy in a variety of different regions and under a variety of different conditions without causing undesired tissue damage to intervening/non-target tissues or structures.
    Type: Grant
    Filed: May 2, 2023
    Date of Patent: May 14, 2024
    Assignee: HistoSonics, Inc.
    Inventors: Jonathan M. Cannata, Ryan M. Miller, Alexander P. Duryea, Dejan Teofilovic, Zeljko Mladenovic, Aleksandra Rakic, Joshua Stopek
  • Patent number: 11969234
    Abstract: An apparatus for estimating bio-information includes a bio-signal obtainer configured to obtain a bio-signal from an object; and a processor configured to: obtain function values by applying a predetermined function to sections of the bio-signal, corresponding to respective windows of a predetermined size, while sliding a window on a time axis of the bio-signal, obtain an oscillometric waveform envelope based on the obtained function values, and estimate bio-information of the object based on the oscillometric waveform envelope.
    Type: Grant
    Filed: May 21, 2020
    Date of Patent: April 30, 2024
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Dae Geun Jang, Ui Kun Kwon
  • Patent number: 11969239
    Abstract: Brain tumor or other tissue classification and/or segmentation is provided based on from multi-parametric MRI. MRI spectroscopy, such as in combination with structural and/or diffusion MRI measurements, are used to classify. A machine-learned model or classifier distinguishes between the types of tissue in response to input of the multi-parametric MRI. To deal with limited training data for tumors, a patch-based system may be used. To better assist physicians in interpreting results, a confidence map may be generated using the machine-learned classifier.
    Type: Grant
    Filed: January 15, 2020
    Date of Patent: April 30, 2024
    Assignee: Siemens Healthineers AG
    Inventors: Bin Lou, Benjamin L. Odry
  • Patent number: 11963754
    Abstract: Accelerated acquisition of scan data by means of magnetic resonance to enable short echo times so that scan data of substances can also be acquired with a transversal relaxation time.
    Type: Grant
    Filed: September 30, 2020
    Date of Patent: April 23, 2024
    Assignee: Siemens Healthineers AG
    Inventors: Nadine Dispenza, Ralf Kartaeusch, Dominik Paul, Manuel Stich, Mario Zeller
  • Patent number: 11931200
    Abstract: An image analyzer detects a lesion for each frame (tomographic image). When the lesion is detected, lesion information (detection flag, position information, and size information) is produced. An indication controller causes a mark surrounding the lesion to be displayed when it is judged that a mark display condition is satisfied, based on the lesion information or the like. The indication controller causes the mark to be deleted from a screen when detection of the lesion is continued and a mark display restriction condition is satisfied.
    Type: Grant
    Filed: April 19, 2021
    Date of Patent: March 19, 2024
    Assignee: FUJIFILM Healthcare Corporation
    Inventors: Mika Sato, Yoko Fujihara
  • Patent number: 11904110
    Abstract: A device includes a medical instrument mounting structure; a base; and a gearless longitudinal translation device connected to and enabling longitudinal movement of the medical instrument mounting structure with respect to the base. The gearless longitudinal translation device includes: a first friction wheel having at least a first beveled side surface, and a second friction wheel having at least a second beveled surface; a first linear rod disposed between the first and second friction wheels and in contact with the first and second beveled surfaces; and a control mechanism attached to the first and second friction wheels for rotating the first and second friction wheels. Rotation of the first and second friction wheels causes a longitudinal displacement of the first linear rod with respect to the first and second friction wheels, which in turn causes the medical instrument mounting structure to be longitudinally displaced with respect to the base.
    Type: Grant
    Filed: May 30, 2018
    Date of Patent: February 20, 2024
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Mika Tapani Ihatsu, Olli Tapio Friman
  • Patent number: 11832993
    Abstract: An ultrasound diagnostic device including a transmitter, a first image processor, a second image processor, and an image synthesizer. The transmitter alternates between first transmission events that include transmission of first detection waves and second transmission events that include transmission of second detection waves. The first image processor generates frames of first images based on reception signals corresponding to a plurality of the first transmission events. The second image processor generates frames of second images based on reception signals corresponding to the second transmission events. The image synthesizer superimposes the second images on the first images to generate synthesized images. Frame rate of the second images is higher than that of the first images.
    Type: Grant
    Filed: July 2, 2021
    Date of Patent: December 5, 2023
    Assignee: KONICA MINOLTA, INC.
    Inventors: Akihiro Kawabata, Yoshihiro Takeda
  • Patent number: 11813484
    Abstract: A histotripsy therapy system configured for the treatment of tissue is provided, which may include any number of features. Provided herein are systems and methods that provide efficacious non-invasive and minimally invasive therapeutic, diagnostic and research procedures. In particular, provided herein are optimized systems and methods that provide targeted, efficacious histotripsy in a variety of different regions and under a variety of different conditions without causing undesired tissue damage to intervening/non-target tissues or structures.
    Type: Grant
    Filed: November 27, 2019
    Date of Patent: November 14, 2023
    Assignee: HistoSonics, Inc.
    Inventors: Jonathan M. Cannata, Ryan Miller, Alexander P. Duryea, Dejan Teofilovic, Zeljko Mladenovic, Aleksandra Rakic, Joshua Stopek
  • Patent number: 11800986
    Abstract: A non-pressure continuous blood pressure measuring device, comprises: a radar sensing module, an electro-cardiac sensing module and a microprocessor. The radar sensing module includes at least a transmitter and a receiver, the transmitter continuously provides a pulse wave signal to an artery, the receiver receives a reflected pulse wave signal. The electro-cardiac sensing module includes at least an electrode; the electro-cardiac sensing module receives an electro-cardiac signal through the electrode. The microprocessor is in signal transmittable connection with the radar sensing module and the electro-cardiac sensing module. The microprocessor controls the radar sensing module and the electro-cardiac sensing module, and simultaneously receives the reflected pulse wave signal and the electro-cardiac signal. The microprocessor determines a blood pressure parameter of the artery according to the reflected pulse wave signal and the electrocardiography signal.
    Type: Grant
    Filed: December 28, 2020
    Date of Patent: October 31, 2023
    Assignee: INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE
    Inventors: Hong-Dun Lin, Tai-Wei Su, Chun-Kai Chang
  • Patent number: 11766184
    Abstract: Articles of manufacture, including an apparatus for detecting a hemodynamic disorder, are provided. A method may include receiving a blood pressure, including an aortic pressure and a distal coronary pressure, over a plurality of heartbeats. The method also includes determining a complement of a ratio of the distal coronary pressure to the aortic pressure for each heartbeat of the plurality of heartbeats. The method also includes determining, based on the complement of the ratio, a maximum complement of the ratio and a minimum complement of the ratio. The method also includes determining, based on the maximum complement and the minimum complement, a pressure-derived coronary flow reserve. The pressure-derived coronary flow reserve includes a ratio of the maximum complement to the minimum complement. The method also includes detecting, based on the pressure-derived coronary flow reserve, a hemodynamic disorder.
    Type: Grant
    Filed: May 29, 2020
    Date of Patent: September 26, 2023
    Assignee: The Regents of the University of California
    Inventor: Lawrence Ang
  • Patent number: 11704790
    Abstract: A target location for a therapeutic intervention is determined in a subject with a neurological disorder. The target location is selected within at least one resting state network (RSN) map according to a predetermined criterion for the neurological disorder. The at least one RSN map includes a plurality of functional voxels within a brain of the subject, and each functional voxel of the plurality of functional voxels is associated with a probability of membership in an RSN. Instructions are transmitted to a treatment system that cause operation to be performed on the selected target location.
    Type: Grant
    Filed: September 25, 2018
    Date of Patent: July 18, 2023
    Assignee: Washington University
    Inventors: Eric Leuthardt, Carl Hacker, Shan Siddiqi, Tim Laumann, Andy Daniel
  • Patent number: 11690598
    Abstract: According to one embodiment, an ultrasound diagnostic apparatus includes a transmitter/receiver and processing circuitry. The transmitter/receiver sequentially transmits a first transmission beam group and a second transmission beam group and receives at least one reception beam for each transmission beam, via an ultrasound probe having a plurality of transducers arranged along an azimuth direction and an elevation direction. The processing circuitry combines a first reception beam based on a first transmission beam included in the first transmission beam group and a second reception beam based on a second transmission beam included in the second transmission beam group. Transmission beams that are adjacent to each other in the azimuth direction or the elevation direction belong to transmission beam groups that are different from each other.
    Type: Grant
    Filed: July 18, 2019
    Date of Patent: July 4, 2023
    Assignee: Canon Medical Systems Corporation
    Inventor: Tomohisa Imamura
  • Patent number: 11647979
    Abstract: An ultrasound diagnostic apparatus (1), which performs a compression test with respect to at least two points of a popliteal vein and a common femoral vein of a subject, includes an ultrasound probe (15), an image acquisition unit (8) that acquires an ultrasound image by transmitting an ultrasound beam toward the subject from the ultrasound probe (15), a vein detection unit (9) that detects the popliteal vein included in the ultrasound image, and an operation guiding unit (10) that guides a user, in a case where the compression test of the popliteal vein is performed, to operate the ultrasound probe such that the ultrasound probe (15) is positioned at a position in which only one popliteal vein is included in the ultrasound image based on the number of the popliteal veins detected by the vein detection unit (9).
    Type: Grant
    Filed: January 11, 2021
    Date of Patent: May 16, 2023
    Assignee: FUJIFILM Corporation
    Inventor: Tsuyoshi Matsumoto
  • Patent number: 11648424
    Abstract: A histotripsy therapy system configured for the treatment of tissue is provided, which may include any number of features. Provided herein are systems and methods that provide efficacious non-invasive and minimally invasive therapeutic, diagnostic and research procedures. In particular, provided herein are optimized systems and methods that provide targeted, efficacious histotripsy in a variety of different regions and under a variety of different conditions without causing undesired tissue damage to intervening/non-target tissues or structures.
    Type: Grant
    Filed: July 15, 2020
    Date of Patent: May 16, 2023
    Assignee: HistoSonics Inc.
    Inventors: Jonathan M. Cannata, Ryan Miller, Alexander P. Duryea, Dejan Teofilovic, Zeljko Mladenovic, Aleksandra Rakic, Joshua Stopek